[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Linear Time Algorithms for Parallel Machine Scheduling

  • Conference paper
Algorithmic Applications in Management (AAIM 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3521))

Included in the following conference series:

Abstract

This paper addresses linear time algorithms for parallel machine scheduling problems. We introduce a kind of threshold algorithms and discuss their main features. Three linear time threshold algorithm classes DT, PT and DTm are studied thoroughly. For all classes, we study their best possible algorithms among each class. We also present their application to several scheduling problems. The new algorithms are better than classical algorithms in time complexity and/or worst-case ratio. Computer-aided proof method is used in the proof of main results, which greatly simplifies the proof and decreases case by case analysis.

Supported by NSFC (10301028, 10271110, 60021201) and TRAPOYT of China.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Burkard, R.E., He, Y., Kellerer, H.: A linear compound algorithm for uniform machine scheduling. Computing 61, 1–9 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Coffman, E.G., Garey, M.R., Johnson, D.S.: An application of bin-packing to multiprocessor scheduling. SIAM Journal on Computing 7, 1–17 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  3. Graham, R.L.: Bounds for certain multiprocessor anomalies. Bell Systems Technical Journal 45, 1563–1581 (1966)

    MATH  Google Scholar 

  4. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM Journal on Applied Mathematics 17, 416–429 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  5. He, Y., Kellerer, H., Kotov, V.: Linear compound algorithms for the partitioning problem. Naval Research Logistics 47, 593–601 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. He, Y., Yang, Q.F., Tan, Z.Y., Yao, E.Y.: Algorithms for semi on-line multiprocessor scheduling. Journal of Zhejiang University Science 3, 60–64 (2002)

    Article  Google Scholar 

  7. He, Y., Zhang, G.C.: Semi on-line scheduling on two identical machines. Computing 62, 179–187 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hochbaum, D.S., Shmoys, E.L.: Using dual approximation algorithms for scheduling problems: Theoretical and practical results. Journal of the ACM 34, 144–162 (1987)

    Article  MathSciNet  Google Scholar 

  9. Hochbaum, D.S., Shmoys, E.L.: A polynomial approximation scheme for scheduling on uniform processors: Using the dual approximation approach. SIAM J. on Computing 17, 539–551 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kellerer, H., Kotov, V., Speranza, M.G., Tuza, Z.: Semi on-line algorithms for the partition problem. Operations Research Letters 21, 235–242 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Tan, Z.Y., He, Y.: Semi-on-line problems on two identical machines with combined partial information. Operations Research Letters 30, 408–414 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tan, Z., He, Y. (2005). Linear Time Algorithms for Parallel Machine Scheduling. In: Megiddo, N., Xu, Y., Zhu, B. (eds) Algorithmic Applications in Management. AAIM 2005. Lecture Notes in Computer Science, vol 3521. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11496199_20

Download citation

  • DOI: https://doi.org/10.1007/11496199_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26224-4

  • Online ISBN: 978-3-540-32440-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics