[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

On Deriving the Second-Stage Training Set for Trainable Combiners

  • Conference paper
Multiple Classifier Systems (MCS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3541))

Included in the following conference series:

Abstract

Unlike fixed combining rules, the trainable combiner is applicable to ensembles of diverse base classifier architectures with incomparable outputs. The trainable combiner, however, requires the additional step of deriving a second-stage training dataset from the base classifier outputs. Although several strategies have been devised, it is thus far unclear which is superior for a given situation. In this paper we investigate three principal training techniques, namely the re-use of the training dataset for both stages, an independent validation set, and the stacked generalization. On experiments with several datasets we have observed that the stacked generalization outperforms the other techniques in most situations, with the exception of very small sample sizes, in which the re-using strategy behaves better. We illustrate that the stacked generalization introduces additional noise to the second-stage training dataset, and should therefore be bundled with simple combiners that are insensitive to the noise. We propose an extension of the stacked generalization approach which significantly improves the combiner robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dietrich, C., Palm, G., Schwenker, F.: Decision templates for the classification of bioacustic time series. Information Fusion 4, 101–109 (2003)

    Article  Google Scholar 

  2. Duin, R.P.W.: The combining classifiers: to train or not to train? In: Proc. of 16th Int. Conf. on Pattern Recognition (Quebec City), vol. II, pp. 765–770 (2002)

    Google Scholar 

  3. Duin, R.P.W., Juszczak, P., de Ridder, D., Paclík, P., Pekalska, E., Tax, D.M.J.: PR-Tools 4.0, a Matlab toolbox for pattern recognition. Technical report, ICT Group, TU Delft, The Netherlands (January 2004), http://www.prtools.org

  4. Duin, R.P.W., Tax, D.M.J.: Experiments with classifier combining rules (invited paper). In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 16–29. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Kuncheva, L.I., Bezdek, J.C., Duin, R.P.W.: Decision templates for multiple classifier fusion: an experimental comparison. Pattern Recog. 34(2), 299–314 (2001)

    Article  MATH  Google Scholar 

  6. Kuncheva, L.I.: Combining Pattern Classifiers. Wiley & Sons, Chichester (2004)

    Book  MATH  Google Scholar 

  7. LeBlanc, M., Tibshirani, R.: Combining estimates in regression and classification. Journal of the American Statistical Association 91(436) (1996)

    Google Scholar 

  8. Raudys, S., Janeliunas, A.: Reduction of the boasting bias of linear experts. In: Roli, F., Kittler, J. (eds.) MCS 2002. LNCS, vol. 2364, p. 242. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Roli, F., Raudys, S., Marcialis, G.L.: An experimental comparison of fixed and trained fusion rules for crisp classifier outputs. In: Roli, F., Kittler, J. (eds.) MCS 2002. LNCS, vol. 2364, pp. 232–241. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Skurichina, M., Paclik, P., Duin, R.P.W., de Veld, D.C.G., Sterenborg, H.J.C.M., Witjes, M.J.H., Roodenburg, J.L.N.: Selection/Extraction of spectral regions for autofluorescence spectra measured in the oral cavity. In: Fred, A., Caelli, T.M., Duin, R.P.W., Campilho, A.C., de Ridder, D. (eds.) SSPR&SPR 2004. LNCS, vol. 3138, pp. 1096–1104. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Suen, C.Y., Lam, L.: Multiple classifier combination methodologies for different output levels. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, p. 52. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  12. Ting, K.M., Witten, I.H.: Issues in stacked generalization. Journal of Artificial Intelligence Research 10, 271–289 (1999)

    MATH  Google Scholar 

  13. Wolpert, D.H.: Stacked generalization. Neural Networks 5, 241–259 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Paclík, P., Landgrebe, T.C.W., Tax, D.M.J., Duin, R.P.W. (2005). On Deriving the Second-Stage Training Set for Trainable Combiners. In: Oza, N.C., Polikar, R., Kittler, J., Roli, F. (eds) Multiple Classifier Systems. MCS 2005. Lecture Notes in Computer Science, vol 3541. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494683_14

Download citation

  • DOI: https://doi.org/10.1007/11494683_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26306-7

  • Online ISBN: 978-3-540-31578-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics