[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Applying Bio-inspired Techniques to the p-Median Problem

  • Conference paper
Computational Intelligence and Bioinspired Systems (IWANN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3512))

Included in the following conference series:

Abstract

Neural networks (NNs) and genetic algorithms (GAs) are the two most popular bio-inspired techniques. Criticism of these approaches includes the tendency of recurrent neural networks to produce infeasible solutions, the lack of generalize of the self-organizing approaches, and the requirement of tuning many internal parameters and operators of genetic algorithms. This paper proposes a new technique which enables feasible solutions, removes the tuning phase, and improves solutions quality of typical combinatorial optimization problems as the p-median problem. Moreover, several biology inspired approaches are analyzed for solving traditional benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Holland, J: Adaptation in Natural and Artificial Systems. University of Michigan Press (1975)

    Google Scholar 

  2. Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  3. Hopfield, J., Tank, D.: Neural computation of decisions in optimization problems. Biological Cybernetics 52, 141–152 (1985)

    MATH  MathSciNet  Google Scholar 

  4. Hakimi, S.: Optimum locations of switching centers and absolute centers and medians of to graph. Operations Research 12, 450–459 (1964)

    Article  MATH  Google Scholar 

  5. Kariv, O., Hakimi, S.: An algorithmic approach to network location problem. part 2: The p-median. SIAM J. Appl. Math. 37, 539–560 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  6. ReVelle, C., Swain, R.: Central facilities location. Geographical Analysis 2, 30–42 (1970)

    Article  Google Scholar 

  7. Narula, S., Ogbu, U., Samuelsson, H.: An algorithm for the problem p-mediates. Operations Research 25, 709–713 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  8. Galvao, R.: A dual-bounded algorithm for the problem p-mediates. Operations Research 28, 1112–1121 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  9. Khumawala, B.: An efficient branch and bound algorithm for the warehouse location problem. Management Science 18, 718–731 (1972)

    Article  Google Scholar 

  10. Teitz, M., Bart, P.: Heuristic methods for estimating the generalized vertex median of a weighted graph. Operations Research 16, 955–961 (1968)

    Article  MATH  Google Scholar 

  11. Rolland, E., Schilling, D., Current, J.R.: An efficient tabu search procedure for the p-median problem. European Journal of Operational Research 96, 329–342 (1997)

    Article  MATH  Google Scholar 

  12. Hribar, M., Daskin, M.: A dynamic programming heuristic for the problem p-mediates. European Journal of Operational Research 101, 499–508 (1997)

    Article  MATH  Google Scholar 

  13. Rosing, K., ReVelle, C.: Heuristic concentration: two stage solution construction. European Journal of Operational Research 97, 75–86 (1997)

    Article  MATH  Google Scholar 

  14. Hansen, P., Mladenovic, N.: Variable neighborhood search for the p-median problem. Location Science 5, 141–152 (1997)

    Article  Google Scholar 

  15. Lozano, S., Guerrero, F., Onieva, L., Larrañeta, J.: Kohonen maps for solving to class of location-allocation problems. European Journal of Operational Research 108, 106–117 (1998)

    Article  MATH  Google Scholar 

  16. Domínguez, E., Muñoz, J.: An efficient neural network for the p-median problem. In: Garijo, F.J., Riquelme, J.-C., Toro, M. (eds.) IBERAMIA 2002. LNCS (LNAI), vol. 2527, pp. 460–469. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  17. Alp, O., Erkut, E., Drezner, Z.: An efficient genetic algorithm for the p-median problem. Annals of Operations Research 122, 21–42 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Domínguez, E., Muñoz, J.: Integer programming formulations of discrete p-median problems. In: EWGLA 2005 (2004)

    Google Scholar 

  19. Hosage, C., Goodchild, M.: Discrete space location-allocation solutions from genetic algorithms. Annals of Operational Research 6, 35–46 (1986)

    Article  Google Scholar 

  20. Nogueira Lorena, L., Furtado, J.: Constructive genetic algorithm for clustering problems. Evolutionary Computation 9, 309–327 (2001)

    Article  Google Scholar 

  21. Bozkaya, B., Zhang, J., Erkut, E.: An Efficient Genetic Algorithm for the p-Median Problem. In: Facility Location: Applications and Theory, ch. 6, pp. 179–205. Springer, Heidelberg (2003)

    Google Scholar 

  22. Osman, I.H., Laporte, G.: Metaheuristics: A bibliography. Annals of Operations Reasearch 63, 513–623 (1996)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Domínguez, E., Muñoz, J. (2005). Applying Bio-inspired Techniques to the p-Median Problem. In: Cabestany, J., Prieto, A., Sandoval, F. (eds) Computational Intelligence and Bioinspired Systems. IWANN 2005. Lecture Notes in Computer Science, vol 3512. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494669_9

Download citation

  • DOI: https://doi.org/10.1007/11494669_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26208-4

  • Online ISBN: 978-3-540-32106-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics