[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Real-Time Spiking Neural Network: An Adaptive Cerebellar Model

  • Conference paper
Computational Intelligence and Bioinspired Systems (IWANN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3512))

Included in the following conference series:

Abstract

A spiking neural network modeling the cerebellum is presented. The model, consisting of more than 2000 conductance-based neurons and more than 50 000 synapses, runs in real-time on a dual-processor computer. The model is implemented on an event-driven spiking neural network simulator with table-based conductance and voltage computations. The cerebellar model interacts every millisecond with a time-driven simulation of a simple environment in which adaptation experiments are setup. Learning is achieved in real-time using spike time dependent plasticity rules, which drive synaptic weight changes depending on the neurons activity and the timing in the spiking representation of an error signal. The cerebellar model is tested on learning to continuously predict a target position moving along periodical trajectories. This setup reproduces experiments with primates learning the smooth pursuit of visual targets on a screen. The model learns effectively and concurrently different target trajectories. This is true even though the spiking rate of the error representation is very low, reproducing physiological conditions. Hence, we present a complete physiologically relevant spiking cerebellar model that runs and learns in real-time in realistic conditions reproducing psychophysical experiments. This work was funded in part by the EC SpikeFORCE project (IST-2001-35271, www.spikeforce.org).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Carrillo, R.R., Ros, E., Ortigosa, E.M., Barbour, B., Agís, R.: Lookup Table Powered Neural Event-Driven Simulator. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 168–175. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Kettner, R.E., Mahamud, S., Leung, H., Sittkoff, N., Houk, J.C., Peterson, B.W., Barto, A.G.: Prediction of complex two-dimensional trajectories by a cerebellar model of smooth pursuit eye movement. Journal of Neurophysiology 77(4), 2115–2130 (1997)

    Google Scholar 

  3. Ito, M.: Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiological Reviews 81(3), 1143–1195 (2001)

    Google Scholar 

  4. Kuroda, S., Yamamoto, K., Miyamoto, H., Doya, K., Kawato, M.: Statistical characteristics of climbing fiber spikes necessary for efficient cerebellar learning. Biological Cybernetics 84, 183–192 (2001)

    Article  Google Scholar 

  5. Hansel, C., Linden, D.J., D’Angelo, E.: Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum. Nature Neuroscience 4(5), 467–475 (2001)

    Google Scholar 

  6. Coenen, O.J.M.D., Arnold, M.P., Sejnowski, T.J., Jabri, M.A.: Parallel fiber coding in the cerebellum for life-long learning. Autonomous Robots 11(3), 291–297 (2001)

    Article  MATH  Google Scholar 

  7. Gerstner, W., Kistler, W.M.: Spiking neuron models. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  8. Lev-Ram, V., Mehta, S.B., Kleinfeld, D., Tsien, R.Y.: Reversing cerebellar long-term depression. Proceedings of the National Academy of Sciences 100(26), 15989–15993 (2003)

    Article  Google Scholar 

  9. Medina, J.F., Nores, W.L., Mauk, M.D.: Inhibition of climbing fibres is a signal for the extinction of conditioned eyelid responses. Nature 416, 330–333 (2003)

    Article  Google Scholar 

  10. Schweighofer, N., Doya, K., Fukai, H., Chiron, J.V., Furukawa, T., Kawato, M.: Chaos may enhance information transmission in the inferior olive. Proceedings of the National Academy of Sciences 101, 4655–4660 (2004)

    Article  Google Scholar 

  11. Schweighofer, N., Arbib, A.A., Kawato, M.: Role of the cerebellum in reaching movements in humans. II. A neural model of the intermediate cerebellum. European Journal Of Neuroscience 10, 95–105 (1998)

    Article  Google Scholar 

  12. Spoelstra, J., Schweighofer, N., Arbib, M.A.: Cerebellar learning of accurate predictive control for fast-reaching movements. Biological Cybernetics 82, 321–333 (2000)

    Article  Google Scholar 

  13. Medina, J.F., Mauk, M.D.: Simulations of cerebellar motor learning: computational analysis of plasticity at the mossy fiber to deep nucleus synapse. The Journal of Neuroscience 19(16), 7140–7151 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boucheny, C., Carrillo, R., Ros, E., Coenen, O.J.M.D. (2005). Real-Time Spiking Neural Network: An Adaptive Cerebellar Model. In: Cabestany, J., Prieto, A., Sandoval, F. (eds) Computational Intelligence and Bioinspired Systems. IWANN 2005. Lecture Notes in Computer Science, vol 3512. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494669_18

Download citation

  • DOI: https://doi.org/10.1007/11494669_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26208-4

  • Online ISBN: 978-3-540-32106-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics