[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Complexity of Continuous Space Machine Operations

  • Conference paper
New Computational Paradigms (CiE 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3526))

Included in the following conference series:

  • 1169 Accesses

Abstract

We investigate the computational complexity of an optical model of computation called the continuous space machine (CSM). We characterise worst case resource growth over time for each of the CSM’s ten operations with respect to seven resource measures. Many operations exhibit unreasonably large growth rates thus motivating restrictions on the CSM, in particular we give a restriction called the C 2-CSM.

We thank Tom Naughton for many fruitful discussions and in particular for his collaboration on the CSM definition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Balcázar, J.L., Díaz, J., Gabarró, J.: Structural Complexity. EATCS Monographs on Theoretical Computer Science, vol. I, II. Springer, Berlin (1988)

    MATH  Google Scholar 

  2. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and real computation. Springer, New York (1997)

    MATH  Google Scholar 

  3. Bracewell, R.N.: The Fourier transform and its applications, 2nd edn. Electrical and electronic engineering series. McGraw-Hill, New York (1978)

    MATH  Google Scholar 

  4. Campagnolo, M.L.: Computational Complexity of Real Valued Recursive Functions and Analog Circuits. PhD thesis, Universidade Técnica de Lisboa (2001)

    Google Scholar 

  5. da Silva Graça, D.: The general purpose analog computer and recursive functions over the reals. Master’s thesis, IST, Universidade Técnica de Lisboa (2002)

    Google Scholar 

  6. Feitelson, D.G.: Optical Computing. MIT Press, Cambridge (1988)

    Google Scholar 

  7. Goldschlager, L.M.: A universal interconnection pattern for parallel computers. Journal of the ACM 29(4), 1073–1086 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  8. Goodman, J.W.: Introduction to Fourier optics, 2nd edn. McGraw-Hill, New York (1996)

    Google Scholar 

  9. Goodman, J.W., Silvestri, A.M.: Some effects of Fourier domain phase quantization. IBM Journal of research and development 14, 478–484 (1970)

    Article  MATH  Google Scholar 

  10. Moore, C.: Recursion theory on the reals and continuous-time computation. Theoretical Computer Science 162(1), 23–44 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Naughton, T.J.: Continuous-space model of computation is Turing universal. In: Bains, S., Irakliotis, L.J. (eds.) Critical Technologies for the Future of Computing, Proceedings of SPIE, San Diego, California, vol. 4109 (August 2000)

    Google Scholar 

  12. Naughton, T.J.: A model of computation for Fourier optical processors. In: Lessard, R.A., Galstian, T. (eds.) Optics in Computing 2000, Proc. SPIE, Quebec, Canada, vol. 4089, pp. 24–34 (June 2000)

    Google Scholar 

  13. Naughton, T.J., Woods, D.: On the computational power of a continuous-space optical model of computation. In: Margenstern, M., Rogozhin, Y. (eds.) MCU 2001. LNCS, vol. 2055, pp. 288–299. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  14. Niven, I.: Irrational numbers. The Carus Mathematical Monographs. The Mathematical Association of America, vol. 11. Wiley, Chichester (1956)

    MATH  Google Scholar 

  15. Parberry, I.: Parallel complexity theory. Wiley, Chichester (1987)

    MATH  Google Scholar 

  16. Pratt, V.R., Stockmeyer, L.J.: A characterisation of the power of vector machines. Journal of Computer and Systems Sciences 12, 198–221 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  17. Weihrauch, K.: Computable Analysis: An Introduction. Springer, Berlin (2000)

    MATH  Google Scholar 

  18. Woods, D.: Computational complexity of an optical model of computation. PhD thesis, National University of Ireland, Maynooth (2004) (submitted)

    Google Scholar 

  19. Woods, D., Naughton, T.J.: An optical model of computation. Theoretical Computer Science (2005) (in print)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Woods, D., Gibson, J.P. (2005). Complexity of Continuous Space Machine Operations. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds) New Computational Paradigms. CiE 2005. Lecture Notes in Computer Science, vol 3526. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494645_66

Download citation

  • DOI: https://doi.org/10.1007/11494645_66

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26179-7

  • Online ISBN: 978-3-540-32266-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics