Abstract
We investigate the computational complexity of an optical model of computation called the continuous space machine (CSM). We characterise worst case resource growth over time for each of the CSM’s ten operations with respect to seven resource measures. Many operations exhibit unreasonably large growth rates thus motivating restrictions on the CSM, in particular we give a restriction called the C 2-CSM.
We thank Tom Naughton for many fruitful discussions and in particular for his collaboration on the CSM definition.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Balcázar, J.L., Díaz, J., Gabarró, J.: Structural Complexity. EATCS Monographs on Theoretical Computer Science, vol. I, II. Springer, Berlin (1988)
Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and real computation. Springer, New York (1997)
Bracewell, R.N.: The Fourier transform and its applications, 2nd edn. Electrical and electronic engineering series. McGraw-Hill, New York (1978)
Campagnolo, M.L.: Computational Complexity of Real Valued Recursive Functions and Analog Circuits. PhD thesis, Universidade Técnica de Lisboa (2001)
da Silva Graça, D.: The general purpose analog computer and recursive functions over the reals. Master’s thesis, IST, Universidade Técnica de Lisboa (2002)
Feitelson, D.G.: Optical Computing. MIT Press, Cambridge (1988)
Goldschlager, L.M.: A universal interconnection pattern for parallel computers. Journal of the ACM 29(4), 1073–1086 (1982)
Goodman, J.W.: Introduction to Fourier optics, 2nd edn. McGraw-Hill, New York (1996)
Goodman, J.W., Silvestri, A.M.: Some effects of Fourier domain phase quantization. IBM Journal of research and development 14, 478–484 (1970)
Moore, C.: Recursion theory on the reals and continuous-time computation. Theoretical Computer Science 162(1), 23–44 (1996)
Naughton, T.J.: Continuous-space model of computation is Turing universal. In: Bains, S., Irakliotis, L.J. (eds.) Critical Technologies for the Future of Computing, Proceedings of SPIE, San Diego, California, vol. 4109 (August 2000)
Naughton, T.J.: A model of computation for Fourier optical processors. In: Lessard, R.A., Galstian, T. (eds.) Optics in Computing 2000, Proc. SPIE, Quebec, Canada, vol. 4089, pp. 24–34 (June 2000)
Naughton, T.J., Woods, D.: On the computational power of a continuous-space optical model of computation. In: Margenstern, M., Rogozhin, Y. (eds.) MCU 2001. LNCS, vol. 2055, pp. 288–299. Springer, Heidelberg (2001)
Niven, I.: Irrational numbers. The Carus Mathematical Monographs. The Mathematical Association of America, vol. 11. Wiley, Chichester (1956)
Parberry, I.: Parallel complexity theory. Wiley, Chichester (1987)
Pratt, V.R., Stockmeyer, L.J.: A characterisation of the power of vector machines. Journal of Computer and Systems Sciences 12, 198–221 (1976)
Weihrauch, K.: Computable Analysis: An Introduction. Springer, Berlin (2000)
Woods, D.: Computational complexity of an optical model of computation. PhD thesis, National University of Ireland, Maynooth (2004) (submitted)
Woods, D., Naughton, T.J.: An optical model of computation. Theoretical Computer Science (2005) (in print)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Woods, D., Gibson, J.P. (2005). Complexity of Continuous Space Machine Operations. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds) New Computational Paradigms. CiE 2005. Lecture Notes in Computer Science, vol 3526. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494645_66
Download citation
DOI: https://doi.org/10.1007/11494645_66
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26179-7
Online ISBN: 978-3-540-32266-5
eBook Packages: Computer ScienceComputer Science (R0)