[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Solving Hard Local Minima Problems Using Basin Cells for Multilayer Perceptron Training

  • Conference paper
Advances in Neural Networks – ISNN 2005 (ISNN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3496))

Included in the following conference series:

  • 1052 Accesses

Abstract

An analysis of basin cells for an error surface of an multilayer perceptron is presented. Utilizing the topological structure of the basin cells, an escaping strategy is proposed to solve difficult local minima problems. A numerical example is given to illustrate the proposed method and is shown to have a potential to locate better local minima efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barhen, J., Protopopescu, V., Reister, D.: TRUST: A Deterministic Algorithm for Global Optimization. Science 276, 1094–1097 (1997)

    Article  MathSciNet  Google Scholar 

  2. Battiti, R.: First-and Second-Order Methods for Learning: Between Steepest Descent and Newton’s Methods. Neural Computation 4, 141–166 (1992)

    Article  Google Scholar 

  3. Chiang, H.-D., Fekih-Ahmed, L.: Quasi-stability Regions of Nonlinear Dynamical Systems: Theory. IEEE Trans. Circuits and Systems 41, 627–635 (1996)

    MathSciNet  Google Scholar 

  4. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall, New York (1999)

    MATH  Google Scholar 

  5. Jongen, H.T., Jonker, P., Twilt, F.: Nonlinear Optimization in \(\Re^{\rm n}\). Peter Lang Verlag, Frankfurt (1995)

    Google Scholar 

  6. Lee, J.: Dynamic Gradient Approaches to Compute the Closest Unstable Equilibrium Point for Stability Region Estimate and Their Computational Limitations. IEEE Trans. on Automatic Control 48, 321–324 (2003)

    Article  Google Scholar 

  7. Lee, J., Chiang, H.-D.: A Singular Fixed-point Homotopy Method to Locate the Closest Unstable Equilibrium Point for Transient Stability Region Estimate. IEEE Trans. on Circuits and Systems- Part II 51, 185–189 (2004)

    Article  Google Scholar 

  8. Lee, J., Chiang, H.-D.: A Dynamical Trajectory-Based Methodology for Systematically Computing Multiple Optimal Solutions of General Nonlinear Programming Problems. IEEE Trans. on Automatic Control 49, 888–899 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yoon, Y., Lee, J. (2005). Solving Hard Local Minima Problems Using Basin Cells for Multilayer Perceptron Training. In: Wang, J., Liao, X., Yi, Z. (eds) Advances in Neural Networks – ISNN 2005. ISNN 2005. Lecture Notes in Computer Science, vol 3496. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11427391_95

Download citation

  • DOI: https://doi.org/10.1007/11427391_95

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25912-1

  • Online ISBN: 978-3-540-32065-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics