[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A SOM Based Model Combination Strategy

  • Conference paper
Advances in Neural Networks – ISNN 2005 (ISNN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3496))

Included in the following conference series:

Abstract

A SOM based model combination strategy, allowing to create adaptive – data dependent – committees, is proposed. Both, models included into a committee and aggregation weights are specific for each input data point analyzed. The possibility to detect outliers is one more characteristic feature of the strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Taniguchi, M., Tresp, V.: Averaging Regularized Estimators. Neural Computation 9, 1163–1178 (1997)

    Article  Google Scholar 

  2. Verikas, A., Lipnickas, A., Malmqvist, K., Bacauskiene, M., Gelzinis, A.: Soft Combination of Neural Classifiers: A Comparative Study. Pattern Recognition Letters 20, 429–444 (1999)

    Article  Google Scholar 

  3. Gader, P.D., Mohamed, M.A., Keller, J.M.: Fusion of Handwritten Word Classifiers. Pattern Recognition Letters 17, 577–584 (1996)

    Article  Google Scholar 

  4. Verikas, A., Lipnickas, A.: Fusing Neural Networks through Space Partitioning and Fuzzy Integration. Neural Processing Letters 16, 53–65 (2002)

    Article  MATH  Google Scholar 

  5. Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On Combining Classifiers. IEEE Trans Pattern Analysis and Machine Intelligence 20, 226–239 (1998)

    Article  Google Scholar 

  6. Kim, S.P., Sanchez, J.C., Erdogmus, D., Rao, Y.N., Wessberg, J., Principe, J.C., Nicolelis, M.: Divide-and-conquer Approach for Brain Machine Interfaces: Nonlinear Mixture of Competitive Linear Models. Neural Networks 16, 865–871 (2003)

    Article  Google Scholar 

  7. Woods, K., Kegelmeyer, W.P., Bowyer, K.: Combination of Multiple Classifiers Using Local Accuracy Estimates. IEEE Trans Pattern Analysis Machine Intelligence 19, 405–410 (1997)

    Article  Google Scholar 

  8. Verikas, A., Lipnickas, A., Malmqvist, K.: Selecting Neural Networks for a Committee Decision. International Journal of Neural Systems 12, 351–361 (2002)

    Article  Google Scholar 

  9. Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer, Berlin (2001)

    MATH  Google Scholar 

  10. Griffith, N., Partridge, D.: Self-organizing Decomposition of Functions. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 250–259. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  11. Koskela, M., Laaksonen, J., Oja, E.: Implementing Relevance Feedback as Convolutions of Local Neighborhoods on Self-organizing Maps. In: Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, pp. 981–986. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Hunt, R.W.G.: Measuring Colour. Fountain Press (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Englund, C., Verikas, A. (2005). A SOM Based Model Combination Strategy. In: Wang, J., Liao, X., Yi, Z. (eds) Advances in Neural Networks – ISNN 2005. ISNN 2005. Lecture Notes in Computer Science, vol 3496. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11427391_73

Download citation

  • DOI: https://doi.org/10.1007/11427391_73

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25912-1

  • Online ISBN: 978-3-540-32065-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics