[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Feature Point Matching of Affine Model Images Using Hopfield Network

  • Conference paper
Advances in Neural Networks – ISNN 2005 (ISNN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3497))

Included in the following conference series:

  • 1109 Accesses

Abstract

This paper presents an approach to match feature point of a pair of 3-dimensional affine model images. The affine transferring parameters are computed by a set of corresponding feature points, which are obtained based on 2D Hopfield neural network. The design of energy function of the neural network optimizes the matching error of the feature points. Two affine geometric constraints, epipolar and homography are used without the restriction to scene’s particularity. A pair of affine model images tests the performance of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hopfield, J.J., Tank, D.W.: Neural Computations of Decisions in Optimization Problems. Biol. Cybern. 52, 141–152 (1985)

    MATH  MathSciNet  Google Scholar 

  2. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  3. Shapiro, L.S., Zisserman, A., Brady, M.: 3D Motion Recovery Via Affine Epipolar Geometry. The International Journal of Computer Vision 16, 147–182 (1995)

    Article  Google Scholar 

  4. Arbter, K., Snyder, W.E., Bukhardt, H., et al.: Application of Affine-Invariant Fourier Descriptors to Recognition of 3-D Objects. IEEE Transaction on Pattern Analysis and Maching Intelligence 12, 640–647 (1990)

    Article  Google Scholar 

  5. Peng, M.K., Gupta, N.K.: Occluded Object Recognition by Hopfield Networks. In: Proc. IEEE Int. Conf. Neural Networks, vol. 7, pp. 4309–4315 (1994)

    Google Scholar 

  6. Loenderink, J.J., van Doorn, A.J.: Affine Structure from Motion. J. Opt. Soc. Am. A 8, 377–385 (1991)

    Article  Google Scholar 

  7. Chung, R., Su, J.: Stereo Vision for Curved Surface without Using the Smoothness Constraint. In: Proc. the 3rd Conf., Asian Control, Shanghai, China, pp. 2839–2845 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tian, J., Su, J. (2005). Feature Point Matching of Affine Model Images Using Hopfield Network. In: Wang, J., Liao, XF., Yi, Z. (eds) Advances in Neural Networks – ISNN 2005. ISNN 2005. Lecture Notes in Computer Science, vol 3497. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11427445_66

Download citation

  • DOI: https://doi.org/10.1007/11427445_66

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25913-8

  • Online ISBN: 978-3-540-32067-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics