[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Determination of Optimum Target Values for a Production Process Based on Two Surrogate Variables

  • Conference paper
Computational Science and Its Applications – ICCSA 2005 (ICCSA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3483))

Included in the following conference series:

Abstract

In this paper, we consider the problem of determining the optimum target values of the process mean and screening limits for a production process under single screening procedure. Two surrogate variables are observed simultaneously in single screening procedure. It is assumed that two surrogate variables are correlated with the quality characteristic of interest. A model is constructed that involve selling price and production, inspection and penalty costs. A method for finding the optimum target values of the process mean and screening limits is presented when the quality characteristic of interest and surrogate variables are assumed to be jointly normally distributed. A numerical example is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bettes, D.C.: Finding an Optimum Target Value in Relation to a Fixed Lower Limit and Arbitary Upper Limit. Applied Statistics 11, 202–210 (1962)

    Article  Google Scholar 

  2. Golhar, D.Y.: Determination of the Best Mean Contents for a Canning Problem. Journal of Quality Technology 19, 82–84 (1987)

    Google Scholar 

  3. Golhar, D.Y., Pollock, S.M.: The Determination of the Best Mean and the Upper Limit for a Canning Problem. Journal of Quality Technology 20, 188–192 (1988)

    Google Scholar 

  4. Hunter, W.G., Kartha, C.D.: Determining the Most Profitable Target Value for a Production Process. Journal of Quality Technology 9, 176–180 (1977)

    Google Scholar 

  5. Bisgaard, S., Hunter, W.G., Pallesen, L.: Economic Selection of Quality of Manufactured Product. Technometrics 26, 9–18 (1984)

    Article  MATH  Google Scholar 

  6. Lee, M.K., Jang, J.S.: The Optimum Target Values for a Production Process with Three-class Screening. International Journal of Production Economics 49, 91–99 (1997)

    Article  Google Scholar 

  7. Hong, S.H., Elsayed, E.A., Lee, M.K.: Optimum Mean Value and Screening Limits for Production Processes with Multi-Class Screening. International Journal of Production Research 37, 155–163 (1999)

    Article  MATH  Google Scholar 

  8. Boucher, T.O., Jafari, M.A.: The Optimum Target Value for Single Filling Operations with Quality Sampling Plans. Journal of Quality Technology 23, 44–47 (1991)

    Google Scholar 

  9. Al-Sultan, K.S.: An Algorithm for the Determination of the Optimal Target Values for Two Machines in Series with Quality Sampling Plans. International Journal of Production Research 12, 37–45 (1994)

    Article  Google Scholar 

  10. Elsayed, E.A., Chen, A.: Optimal Levels of Process Parameters for Products with Multiple Characteristics. International Journal of Production Research 31, 1117–1132 (1993)

    Article  Google Scholar 

  11. Arcelus, F.J., Rahim, M.A.: Simultaneous Economic Selection of a Variables and an Attribute Target Mean. Journal of Quality Technology 26, 125–133 (1994)

    Google Scholar 

  12. Chen, S.L., Chung, K.J.: Selection of the Optimal Precision Level and Target Value for a Production Process: the Lower Specification Limit Case. IIE Transactions 28, 979–985 (1996)

    Google Scholar 

  13. Hong, S.H., Elsayed, E.A.: The Optimum Mean for Processes with Normally Distributed Measurement Error. Journal of Quality Technology 31, 338–344 (1999)

    Google Scholar 

  14. Pfeifer, P.E.: A General Piecewise Linear Canning Problem Model. Journal of Quality Technology 31, 326–337 (1999)

    Google Scholar 

  15. Rahim, M.A., Shaibu, A.B.: Economic Selection of Optimal Target Values. Process Control and Quality 11, 369–381 (2000)

    Article  Google Scholar 

  16. Kim, Y.J., Cho, B.R., Phillips, M.D.: Determination of the Optimal Process Mean with the Consideration of variance Reduction and Process Capability. Quality Engineering 13, 251–260 (2000)

    Article  Google Scholar 

  17. Teeravaraprug, J., Cho, B.R.: Designing the Optimal Process Target Levels for Multiple Quality Characteristics. International Journal of Production Research 40, 37–54 (2002)

    Article  MATH  Google Scholar 

  18. Rahim, M.A., Bhadury, J., Al-Sultan, K.S.: Joint Economic Selection of Target Mean and Variance. Engineering Optimization 34, 1–14 (2002)

    Article  MATH  Google Scholar 

  19. Duffuaa, S., Siddiqui, A.W.: Process Targeting with Multi-Class Screening and Measurement Error. International Journal of Production Research 41, 1373–1391 (2003)

    Article  Google Scholar 

  20. Bai, D.S., Lee, M.K.: Optimal target values for a Filling Process When Inspection is Based on a Correlaed Vraiable. International Journal of Production Economics 32, 327–334 (1993)

    Article  Google Scholar 

  21. Lee, M.K., Hong, S.H., Elsayed, E.A.: The Optimum Target Value under Single and Two-Stage Screenings. Journal of Quality Technology 33, 506–514 (2001)

    Google Scholar 

  22. Tang, K., Lo, J.: Determination of the Process Mean When Inspection is Based on a Correlated Variable. IIE Transactions 25, 66–72 (1993)

    Article  Google Scholar 

  23. Anderson, T.W.: An Introduction to Multivariate Statistical Analysis. John Wiley & Sons Inc., New York (1984)

    MATH  Google Scholar 

  24. Reference Manual: International Mathematical and Statistical Libraries. IMSL Library, Houston (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, M.K., Kwon, H.M., Kim, Y.J., Bae, J. (2005). Determination of Optimum Target Values for a Production Process Based on Two Surrogate Variables. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2005. ICCSA 2005. Lecture Notes in Computer Science, vol 3483. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11424925_26

Download citation

  • DOI: https://doi.org/10.1007/11424925_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25863-6

  • Online ISBN: 978-3-540-32309-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics