[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Automatic Identification of Parallel Documents With Light or Without Linguistic Resources

  • Conference paper
Advances in Artificial Intelligence (Canadian AI 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3501))

Abstract

Parallel corpora are playing a crucial role in multilingual natural language processing. Unfortunately, the availability of such a resource is the bottleneck in most applications of interest. Mining the web for parallel corpora is a viable solution that comes at a price: it is not always easy to identify parallel documents among the crawled material. In this study we address the problem of automatically identifying the pairs of texts that are translation of each other in a set of documents. We show that it is possible to automatically build particularly efficient content-based methods that make use of very little lexical knowledge. We also evaluate our approach toward a front-end translation task and demonstrate that our parallel text classifier yields better performances than another approach based on a rich lexicon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Langlais, P., Simard, M., Veronis, J.: Methods and practical issues in evaluating alignment techniques. In: Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics (ACL), Montréal, Quebec, Canada, pp. 711–717 (1998)

    Google Scholar 

  2. Macklovitch, E., Simard, M., Langlais, P.: Transsearch: A free translation memory on the world wide web. In: Second International Conference On Language Resources and Evaluation (LREC), Athens Greece, vol. 3, pp. 1201–1208 (2000)

    Google Scholar 

  3. Brown, P.F., Pietra, S.A.D., Pietra, V.J.D., Mercer, R.L.: The mathematics of statistical machine translation: Parameter estimation. Computational Linguistics 19, 263–311 (1993)

    Google Scholar 

  4. Martin, J., Johnson, H., Farley, B., Maclachlan, A.: Aligning and using an english-inuktitut parallel corpus. In: HLT-NAACL Workshop: Building and Using Parallel Texts - Data Driven Machine Translation and Beyond, Edmonton, Canada, pp. 115–118 (2003)

    Google Scholar 

  5. Oard, D.W., Och, F.J.: Rapid-reponse machine translation for unexpected languages. In: Machine Translation Summit IX, New Orleans, Louisiana, USA (2003)

    Google Scholar 

  6. Kraaij, W., Nie, J.Y., Simard, M.: Embedding web-based statistical translation models in cross-language information retrieval. Computational Linguistics 29, 381–419 (2003)

    Article  Google Scholar 

  7. Resnik, P., Smith, N.A.: The web as a parallel corpus. Computational Linguistics 29, 349–380 (2003), Special Issue on the Web as a Corpus

    Google Scholar 

  8. Ma, X., Liberman, M.: Bits: A method for bilingual text search over the web. In: Machine Translation Summit VII, Kent Ridge Digital Labs, National University of Singapore (1999)

    Google Scholar 

  9. Munteanu, D.S., Fraser, A., Marcu, D.: Improved machine translation performace via parallel sentence extraction from comparable corpora. In: Proceedings of the Human Language Technology and North American Association for Computational Linguistics Conference, HLT/NAACL 2004 (2004)

    Google Scholar 

  10. Rapp, R.: Automatic identification of word translations from unrelated english and german corpora. In: Proceedings of the 37th conference on Association for Computational Linguistics, Association for Computational Linguistics, pp. 519–526 (1999)

    Google Scholar 

  11. Nadeau, D., Foster, G.: Real-time identification of parallel texts from bilingual news feed. In: CLINE 2004, Computational Linguistics in the North East (2004)

    Google Scholar 

  12. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and reversals. Sov. Phys. Dokl. 6, 707–710 (1966)

    MathSciNet  Google Scholar 

  13. Freund, Y.: A short introduction to boosting. Journal of Japanese Society for Artificial Intelligence 14, 771–780 (1999): Appearing in Japanese, translation by Naoki Abe

    Google Scholar 

  14. Bishop, C.M.: Neural networks for pattern recognition. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  15. Koehn, P.: Europarl: A multilingual corpus for evaluation of machine translation. Draft (2002)

    Google Scholar 

  16. Ouimet, M.: Transsearch anglais-espagnol (2002), http://www.iro.umontreal.ca/~ouimema/ift3051/README.html

  17. Langlais, P., Carl, M., Streiter, O.: Experimenting with phrase-based statistical translation within the iwslt 2004 chinese-to-english shared translation task. In: International Workshop on Spoken Language Translation, Kytio, Japan (2004)

    Google Scholar 

  18. Koehn, P.: Pharaoh: a beam search decoder for phrase-based statistical machine translation models. In: Frederking, R.E., Taylor, K.B. (eds.) AMTA 2004. LNCS (LNAI), vol. 3265, pp. 115–124. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Patry, A., Langlais, P. (2005). Automatic Identification of Parallel Documents With Light or Without Linguistic Resources. In: Kégl, B., Lapalme, G. (eds) Advances in Artificial Intelligence. Canadian AI 2005. Lecture Notes in Computer Science(), vol 3501. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11424918_37

Download citation

  • DOI: https://doi.org/10.1007/11424918_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25864-3

  • Online ISBN: 978-3-540-31952-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics