[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Digital Cash Protocol Based on Additive Zero Knowledge

  • Conference paper
Computational Science and Its Applications – ICCSA 2005 (ICCSA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3482))

Included in the following conference series:

Abstract

In this paper, we introduce the concept of Additive Non-Interactive Zero Knowledge (NIZK). We extend the notion of NIZK proofs to include the prover’s identity as part of the theorem being proved. An additive proof allows a verifier to construct a new proof of knowledge using the information from an old proof. Intuitively, an additive proof is a proof of knowledge of knowledge. As an application of this concept, we propose a digital cash scheme with transferable coins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wiles, A.: Modular elliptic curves and Fermat’s last theorem. AM 141(3), 443–551 (1995)

    MATH  MathSciNet  Google Scholar 

  2. Goldreich, O.: Zero-knowledge twenty years after its invention (2002)

    Google Scholar 

  3. Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof systems. Journal of Cryptology 7(1), 1–32 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Goldreich, O.: Foundations of Cryptography. volume Basic Tools. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  5. Goldwasser, S.: New directions in cryptography: Twenty some years later (or cryptography and complexity theory: A match made in heaven). In: 38th Annual Symposium on Foundations of Computer Science, pp. 314–324. IEEE, Los Alamitos (1997)

    Chapter  Google Scholar 

  6. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications. In: STOC 1988: Proceedings of the twentieth annual ACM symposium on Theory of computing, pp. 103–112. ACM Press, New York (1988)

    Chapter  Google Scholar 

  7. Blum, M., Santis, A.D., Micali, S., Persiano, G.: Noninteractive zero-knowledge. SIAM J. Comput. 20(6), 1084–1118 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bellare, M., Goldwasser, S.: New paradigms for digital signatures and message authentication based on non-interactive zero knowledge proofs. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 194–211. Springer, Heidelberg (1990)

    Google Scholar 

  9. Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge proofs under general assumptions. SIAM J. Comput. 29(1), 1–28 (2000)

    Article  MathSciNet  Google Scholar 

  10. Camenisch, J., Maurer, U.M., Stadler, M.: Digital payment systems with passive anonymity-revoking trustees. In: Martella, G., Kurth, H., Montolivo, E., Bertino, E. (eds.) ESORICS 1996. LNCS, vol. 1146, pp. 33–43. Springer, Heidelberg (1996)

    Google Scholar 

  11. Panurach, P.: Money in electronic commerce: digital cash, electronic fund transfer, and ecash. Commun. ACM 39(6), 45–50 (1996)

    Article  Google Scholar 

  12. Rabi, M., Sherman, A.T.: An observation on associative one-way functions in complexity theory. Inf. Process. Lett. 64(5), 239–244 (1997)

    Article  MathSciNet  Google Scholar 

  13. Saxena, A., Soh, B.: A new paradigm for group cryptosystems using quick keys. In: Proceedings of the The 11th IEEE International Conference on Networks (ICON 2003), Sydney, Australia, pp. 385–389 (2003)

    Google Scholar 

  14. Hemaspaandra, L.A., Rothe, J., Saxena, A.: Enforcing and defying associativity, commutativity, totality, and strong noninvertibility for one-way functions in complexity theory. Technical Report UR CSD;854, University of Rochester, December 2004 (2004)

    Google Scholar 

  15. Hemaspaandra, L.A., Pasanen, K., Rothe, J.: If p ≠ np then some strongly noninvertible functions are invertible. In: Freivalds, R. (ed.) FCT 2001. LNCS, vol. 2138, pp. 162–171. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  16. Saxena, A., Soh, B.: Contributory approaches to centralized key agreement in dynamic peer groups. In: Proceedings of the The 11th IEEE International Conference on Networks (ICON 2003), Sydney, Australia, pp. 397–402 (2003)

    Google Scholar 

  17. Saxena, A., Soh, B.: A novel method for authenticating mobile agents with one-way signature chaining. In: Proceedings of The 7th International Symposium on Autonomous Decentralized Systems (ISADS 2005), China (2005) (to appear)

    Google Scholar 

  18. Saxena, A., Soh, B.: Authenticating mobile agent platforms using signature chaining without trusted third parties. In: Proceedings of The 2005 IEEE International Conference on e-Technology, e-Commerce and e-Service (EEE 2005), Hong kong (2005) (to appear)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Saxena, A., Soh, B., Zantidis, D. (2005). A Digital Cash Protocol Based on Additive Zero Knowledge. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2005. ICCSA 2005. Lecture Notes in Computer Science, vol 3482. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11424857_74

Download citation

  • DOI: https://doi.org/10.1007/11424857_74

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25862-9

  • Online ISBN: 978-3-540-32045-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics