[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Dynamic Co-allocation Service in Multicluster Systems

  • Conference paper
Job Scheduling Strategies for Parallel Processing (JSSPP 2004)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3277))

Included in the following conference series:

  • 727 Accesses

Abstract

In multicluster systems, and more generally in grids, jobs may require co-allocation, i.e., the simultaneous allocation of resources such as processors in multiple clusters to improve their performance. In previous work, we have studied processor co-allocation through simulations. Here, we extend this work with the design and implementation of a dynamic processor co-allocation service in multicluster systems. While an implementation of basic co-allocation mechanisms has existed for some years in the form of the DUROC component of the Globus Toolkit, DUROC does not provide resource-brokering functionality or fault tolerance in the face of job submission or completion failures. Our design adds these two elements in the form of a software layer on top of DUROC. We have performed experiments that show that our co-allocation service works reliably.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Czajkowski, K., Foster, I., Kesselman, C.: Resource Co-Allocation in Computational Grids. In: Proc. of the 8th IEEE Int’l Symp. on High Performance Distributed Computing (HPDC-8), pp. 219–228 (1999)

    Google Scholar 

  2. Banen, S., Bucur, A., Epema, D.: A Measurement-Based Simulation Study of Processor Co-Allocation in Multicluster Systems. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003. LNCS, vol. 2862, pp. 105–128. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. The Globus Toolkit, http://www.globus.org

  4. Bucur, A., Epema, D.: The Performance of Processor Co-Allocation in Multicluster Systems. In: Proc. of the 3rd IEEE/ACM Int’l Symp. on Cluster Computing and the GRID (CCGrid 2003), pp. 302–309. IEEE Computer Society Press, Los Alamitos (2003)

    Chapter  Google Scholar 

  5. Bucur, A., Epema, D.: Trace-Based Simulations of Processor Co-Allocation Policies in Multiclusters. In: Proc. of the 12th IEEE Int’l Symp. on High Performance Distributed Computing (HPDC-12), pp. 70–79. IEEE Computer Society Press, Los Alamitos (2003)

    Chapter  Google Scholar 

  6. The Portable Batch System, http://www.openpbs.org

  7. Lifka, D.: The ANL/IBM SP Scheduling Systems. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1995 and JSSPP 1995. LNCS, vol. 949, pp. 295–303. Springer, Heidelberg (1995)

    Google Scholar 

  8. The Distributed ASCI Supercomputer (DAS), http://www.cs.vu.nl/das2

  9. Kumar, V., Grama, A., Gupta, A., Karypis, G.: Introduction to Parallel Computing. Benjamin/Cummings (1994)

    Google Scholar 

  10. Frey, J., Tannenbaum, T., Foster, I., Livny, M., Tuecke, S.: Condor-G: A Computation Management Agent for Multi-Institutional Grids. In: Proc. of the 10th IEEE Symp. on High Performance Distributed Computing (HPDC-10), pp. 7–9. IEEE Computer Society Press, Los Alamitos (2001)

    Google Scholar 

  11. Raman, R., Livny, M., Solomon, M.: Policy Driven Heterogeneous Resource Co-Allocation with Gangmatching. In: Proc. of the 12th IEEE Int’l Symp. on High Performance Distributed Computing (HPDC-12), pp. 80–89. IEEE Computer Society Press, Los Alamitos (2003)

    Chapter  Google Scholar 

  12. Deelman, E., et al.: Mapping Abstract Complex Workflows onto Grid Environments. J. of Grid Computing 1, 25–39 (2003)

    Article  Google Scholar 

  13. Deelman, E., et al.: Pegasus: Mapping Scientific Workflows onto the Grid. In: Proc. of the 2nd European Across Grids Conference (2004)

    Google Scholar 

  14. Foster, I., Vockler, J., Wilde, M., Zhao, Y.: Chimera: A Virtual Data System for Representing, Querying, and Automating Data Derivation. In: 14th Int’l Conf. on Scientific and Statistical Database Management, SSDBM 2002 (2002)

    Google Scholar 

  15. Ernemann, C., Hamscher, V., Schwiegelshohn, U., Yahyapour, R., Streit, A.: On Advantages of Grid Computing for Parallel Job Scheduling. In: Proc. of the 2nd IEEE/ACM Int’l Symp. on Cluster Computing and the GRID (CCGrid 2002), pp. 39–46 (2002)

    Google Scholar 

  16. Ernemann, C., Hamscher, V., Streit, A., Yahyapour, R.: Enhanced Algorithms for Multi-Site Scheduling. In: 3rd Int’l Workshop on Grid Computing, pp. 219–231 (2002)

    Google Scholar 

  17. Bucur, A., Epema, D.: The Maximal Utilization of Processor Co-Allocation in Multicluster Systems. In: Proc. of the Int’l Parallel and Distributed Processing Symp (IPDPS), pp. 60–69. IEEE Computer Society Press, Los Alamitos (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sinaga, J.M.P., Mohamed, H.H., Epema, D.H.J. (2005). A Dynamic Co-allocation Service in Multicluster Systems. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds) Job Scheduling Strategies for Parallel Processing. JSSPP 2004. Lecture Notes in Computer Science, vol 3277. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11407522_11

Download citation

  • DOI: https://doi.org/10.1007/11407522_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25330-3

  • Online ISBN: 978-3-540-31795-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics