[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Combining Testing and Proving in Dependent Type Theory

  • Conference paper
Theorem Proving in Higher Order Logics (TPHOLs 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2758))

Included in the following conference series:

Abstract

We extend the proof assistant Agda/Alfa for dependent type theory with a modified version of Claessen and Hughes’ tool QuickCheck for random testing of functional programs. In this way we combine testing and proving in one system. Testing is used for debugging programs and specifications before a proof is attempted. Furthermore, we demonstrate by example how testing can be used repeatedly during proof for testing suitable subgoals. Our tool uses testdata generators which are defined inside Agda/Alfa. We can therefore use the type system to prove properties about them, in particular surjectivity stating that all possible test cases can indeed be generated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Augustsson, L.: Cayenne: a Language with Dependent Types. In: Proceedings of the third ACM SIGPLAN International Conference on Functional Programming (ICFP 1998). ACM SIGPLAN Notices, vol. 34(1), pp. 239–250 (1998)

    Google Scholar 

  2. Backhouse, R., Jansson, P., Jeuring, J., Meertens, L.: Generic Programming – An Introduction. In: Swierstra, S.D., Oliveira, J.N. (eds.) AFP 1998. LNCS, vol. 1608, pp. 28–115. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  3. Bove, A.: General Recursion in Type Theory. PhD thesis. Chalmers University of Technology (2002)

    Google Scholar 

  4. Carlsson, M., Hallgren, T.: Fudgets - Purely Functional Processes with applications to Graphical User Interfaces. PhD thesis. Chalmers University of Technology (1998)

    Google Scholar 

  5. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of Haskell programs. In: Proceedings of the ACM Sigplan International Conference on Functional Programming (ICFP 2000), vol. 35.9, pp. 18–22. ACM Press, New York (2000)

    Google Scholar 

  6. Claessen, K., Hughes, J.: QuickCheck: Automatic Specification-Based Testing: http: http://www.cs.chalmers.se/~rjmh/QuickCheck/

  7. Coquand, C.: Agda, available from http://www.cs.chalmers.se/~catarina/agda

  8. Coquand, T.: Pattern Matching with Dependent Types. In: Nordström, B., Petersson, K., Plotkin, G. (eds.) Proceedings of The 1992 Workshop on Types for Proofs and Programs, Båstad, pp. 71–84 (1992)

    Google Scholar 

  9. Coquand, T.: Structured Type Theory. draft (1999), available from http://www.cs.chalmers.se/~coquand/type.html

  10. Dybjer, P.: Inductive Families. Formal Aspects of Computing 6, 440–465 (1994)

    Article  MATH  Google Scholar 

  11. Dybjer, P., Setzer, A.: A finite axiomatization of inductive-recursive definitions. In: Girard, J.-Y. (ed.) TLCA 1999. LNCS, vol. 1581, pp. 129–146. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  12. Dybjer, P., Setzer, A.: Indexed Induction-Recursion. In: Kahle, R., Schroeder-Heister, P., Stärk, R.F. (eds.) PTCS 2001. LNCS, vol. 2183, pp. 93–113. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  13. Hallgren, T.: Alfa, available from http://www.cs.chalmers.se/~hallgren/Alfa

  14. Hayashi, S., Nakano, H.: PX, a Computational Logic. The MIT Press, Cambridge (1988)

    Google Scholar 

  15. Hayashi, S., Sumitomo, R., Shii, K.-i.: Towards Animation of Proofs - testing proofs by examples. Theoretical Computer Science 272, 177–195 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Martin-Löf, P.: Constructive Mathematics and Computer Programming. In: Logic, Methodology and Philosophy of Science, VI, 1979, pp. 153–175. North-Holland, Amsterdam (1982)

    Chapter  Google Scholar 

  17. Martin-Löf, P.: Intuitionistic Type Theory. Bibliopolis (1984)

    Google Scholar 

  18. Okasaki, C.: An Overview of Edison. In: Haskell Workshop, September 2000, pp. 34–54 (2000)

    Google Scholar 

  19. Parent, C.: A collection of examples using the Program tactic, available from http://pauillac.inria.fr/coq/contribs-eng.html

  20. Programatica: Integrating Programming, Properties, and Validation, http://www.cse.ogi.edu/PacSoft/projects/programatica/

  21. Rabhi, F.A., Lapalme, G.: Algorithms: a functional programming approach. Addison-Wesley Press, Reading (1999)

    Google Scholar 

  22. Wahlstedt, D.: Detecting termination using size-change in parameter values. Master thesis. Chalmers University of Technology (2000)

    Google Scholar 

  23. Xi, H., Pfenning, F.: Dependent types in practical programming. In: Proceedings of the 26th ACM SIGPLAN-SIGACT on Principles of programming languages, pp. 214–227. ACM Press, New York (1999)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dybjer, P., Haiyan, Q., Takeyama, M. (2003). Combining Testing and Proving in Dependent Type Theory. In: Basin, D., Wolff, B. (eds) Theorem Proving in Higher Order Logics. TPHOLs 2003. Lecture Notes in Computer Science, vol 2758. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10930755_12

Download citation

  • DOI: https://doi.org/10.1007/10930755_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40664-8

  • Online ISBN: 978-3-540-45130-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics