Abstract
This paper is concerned with methods that automatically prove termination of term rewrite systems. The aim of dummy elimination, a method to prove termination introduced by Ferreira and Zantema, is to transform a given rewrite system into a rewrite system whose termination is easier to prove. We show that dummy elimination is subsumed by the more recent dependency pair method of Arts and Giesl. More precisely, if dummy elimination succeeds in transforming a rewrite system into a so-called simply terminating rewrite system then termination of the given rewrite system can be directly proved by the dependency pair technique. Even stronger, using dummy elimination as a preprocessing step to the dependency pair technique does not have any advantages either. We show that to a large extent these results also hold for the argument filtering transformation of Kusakari et al.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arts, T., Giesl, J.: Automatically Proving Termination where Simplification Orderings Fail. In: Bidoit, M., Dauchet, M. (eds.) CAAP 1997, FASE 1997, and TAPSOFT 1997. LNCS, vol. 1214, pp. 261–273. Springer, Heidelberg (1997)
Arts, T., Giesl, J.: Termination of Term Rewriting Using Dependency Pairs. Theoretical Computer Science 236, 133–178 (2000), Long version available at www.inferenzsysteme.informatik.tu-darmstadt.de/~reports/ibn-97-46.ps
Arts, T., Giesl, J.: Modularity of termination using dependency pairs. In: Nipkow, T. (ed.) RTA 1998. LNCS, vol. 1379, pp. 226–240. Springer, Heidelberg (1998)
Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)
Bellegarde, F., Lescanne, P.: Termination by Completion, Applicable Algebra in Engineering. Communication and Computing 1, 79–96 (1990)
Ben Cherifa, A., Lescanne, P.: Termination of Rewriting Systems by Polynomial Interpretations and its Implementation. Science of Computer Programming 9, 137–159 (1987)
Dershowitz, N.: Orderings for Term-Rewriting Systems. Theoretical Computer Science 17, 279–301 (1982)
Dershowitz, N.: Termination of Rewriting. Journal of Symbolic Computation 3, 69–116 (1987)
Dick, J., Kalmus, J., Martin, U.: Automating the Knuth Bendix Ordering. Acta Informatica 28, 95–119 (1990)
Ferreira, M.C.F.: Termination of Term Rewriting: Well-foundedness, Totality and Transformations, Ph.D. thesis, Utrecht University, The Netherlands (1995)
Ferreira, M.C.F., Zantema, H.: Dummy Elimination: Making Termination Easier. In: Reichel, H. (ed.) FCT 1995. LNCS, vol. 965, pp. 243–252. Springer, Heidelberg (1995)
Giesl, J.: Generating Polynomial Orderings for Termination Proofs. In: Hsiang, J. (ed.) RTA 1995. LNCS, vol. 914, pp. 426–431. Springer, Heidelberg (1995)
J. Giesl and E. Ohlebusch, Pushing the Frontiers of Combining Rewrite Systems Farther Outwards. In: Proc. 2nd FROCOS 1998, Amsterdam, The Netherlands, Studies in Logic and Computation 7, pp. 141–160. Research Studies Press, Wiley (2000)
Kamin, S., Lévy, J.J.: Two Generalizations of the Recursive Path Ordering, University of Illinois, USA (1980) (unpublished manuscript)
Knuth, D.E., Bendix, P.: Simple Word Problems in Universal Algebras. In: Leech, J. (ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press, Oxford (1970)
Kusakari, K., Nakamura, M., Toyama, Y.: Argument Filtering Transformation. In: Nadathur, G. (ed.) PPDP 1999. LNCS, vol. 1702, pp. 48–62. Springer, Heidelberg (1999)
Lankford, D.: On Proving Term Rewriting Systems are Noetherian, ReportMTP-3, Louisiana Technical University, Ruston, USA (1979)
Middeldorp, A., Ohsaki, H., Zantema, H.: Transforming Termination by Self- Labelling. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS (LNAI), vol. 1104, pp. 373–387. Springer, Heidelberg (1996)
Steinbach, J.: Simplification Orderings: History of Results. Fundamenta Informaticae 24, 47–87 (1995)
Xi, H.: Towards Automated Termination Proofs Through “Freezing”. In: Nipkow, T. (ed.) RTA 1998. LNCS, vol. 1379, pp. 271–285. Springer, Heidelberg (1998)
Zantema, H.: Termination of Term Rewriting: Interpretation and Type Elimination. Journal of Symbolic Computation 17, 23–50 (1994)
Zantema, H.: Termination of Term Rewriting by Semantic Labelling. Fundamenta Informaticae 24, 89–105 (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Giesl, J., Middeldorp, A. (2000). Eliminating Dummy Elimination. In: McAllester, D. (eds) Automated Deduction - CADE-17. CADE 2000. Lecture Notes in Computer Science(), vol 1831. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10721959_25
Download citation
DOI: https://doi.org/10.1007/10721959_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-67664-5
Online ISBN: 978-3-540-45101-3
eBook Packages: Springer Book Archive