[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Learning Probabilistic Grid-Based Maps for Indoor Mobile Robots Using Ultrasonic and Laser Range Sensors

  • Conference paper
MICAI 2000: Advances in Artificial Intelligence (MICAI 2000)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1793))

Included in the following conference series:

Abstract

A new method for learning probabilistic grid-based maps of the environment of a mobile robot is described. New contributions on the three major components of map learning, namely, sensor data fusion, exploration and position tracking, are proposed. In particular, new models of sensors and a way of sensor data fusion that takes advantage of multiple viewpoints are presented. A new approach to control the exploration of the environment taking advantages of local strategies but without losing the completeness of a global search is given. Furthermore, a robot position tracking algorithm, based on polar and rectangular correlations between laser range data and the map is also introduced. Experimental results for the proposed approach using a mobile robot simulator with odometer, ultrasonic and laser range sensors (implemented with laser pointers and a camera), moving in an indoor environment, are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Borenstein, J., Everett, B., Feng, L.: Navigating Mobile Robots: Systems and Techniques. A.K. Peter, Ltd., Wellesley (1996)

    MATH  Google Scholar 

  2. Elfes, A.: Using Occupancy Grids for Mobile Robot Perception and Navigation. IEEE Computer 22(6), 46–57 (1989)

    Google Scholar 

  3. Howard, H., Kitchen, L.: Generating Sonar Maps in Highly Specular Environments. In: Proceedings of the Fourth International Conference on Control, Automation, Robotics and Vision (December 1996)

    Google Scholar 

  4. Kuipers, B., Byun, Y.T.: A robust qualitative method for spatial learning in unknown environments. In: Proceedings of Eighth National Conference on Artificial Intelligence AAAI 1988. AAAI Press/The MIT Press, Cambridge (1988)

    Google Scholar 

  5. Kuipers, B., Byun, Y.T.: A robust exploration and mapping strategy based on a semantic hierarchy of spatial representations. Journal of Robotics and Autonomous Systems 8, 47–63 (1991)

    Article  Google Scholar 

  6. Lee, D.: The Map-Building and Exploration of a Simple Sonar-Equipped Robot. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  7. Leonard, J.J., Durrant-White, H.F., Cox, I.J.: Dynamic map building for an autonomous mobile robot. International Journal of Robotics Research 11(4), 89–96 (1992)

    Google Scholar 

  8. Lim, J.H., Cho, D.W.: Physically Based Sensor Modeling for a Sonar Map in a Specular Environment. In: Proc. IEEE/RSJ International Conference on Robots and Systems, pp. 62–67 (1992)

    Google Scholar 

  9. Matarïc, M.J.: A distributed model for mobile robot environment-learning and navigation. Master’s thesis. MIT, Cambridge (1990)

    Google Scholar 

  10. McKerrow, P.J.: Introduction to Robotics. In: Electronic Systems Engineering. Addison-Wesley, Reading (1991)

    Google Scholar 

  11. Moravec, H.P.: Sensor Fusion in Certainty Grids on Mobile Robots. AI Magazine 9(2), 61–74 (1988)

    Google Scholar 

  12. Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann Publishers, San Mateo (1988)

    Google Scholar 

  13. Rencken, W.D.: Concurrent localization and map building for mobile robots using ultrasonic sensors. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Yokohama, Japan, pp. 2129–2197 (1993)

    Google Scholar 

  14. Romero, L., Morales, E.: Uso de una red neuronal para la fusion de lecturas de sonares en robots moviles. Segundo Encuentro Nacional de Computacion (ENC 1999), Pachuca, Hidalgo, Mexico (1998)

    Google Scholar 

  15. Shigang, L., Ichiro, M., Hiroshi, I., Saburo, T.: Finding of 3D Structure by an Active-vision-based Mobile Robot. In: Proceedings of the IEEE International Conference on Robotics and Automation (1992)

    Google Scholar 

  16. Thrun, S., Bucken, A., Wolfram, B., et al.: Map Learning and High-Speed Navigation in RHINO. In: En Kortenkamp, D., Bonasso, R.P., y Murphy, R. (eds.) Artificial Intelligence and Mobile Robots. AAAI Press/The MIT Press (1998)

    Google Scholar 

  17. Thrun, S.: Learning Maps for Indoor Mobile Robot Navigation. Artificial Intelligence 99(1), 21–71 (1998)

    Article  MATH  Google Scholar 

  18. Yamauchi, B., Schultz, A., Adams, W., Graves, K.: Exploration and Spatial Learning Research at NCARAI. In: Conference on Automated Learning and Discovery, June 11-13. Carnegie Mellon University, Pittsburg (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Romero, L., Morales, E., Sucar, E. (2000). Learning Probabilistic Grid-Based Maps for Indoor Mobile Robots Using Ultrasonic and Laser Range Sensors. In: Cairó, O., Sucar, L.E., Cantu, F.J. (eds) MICAI 2000: Advances in Artificial Intelligence. MICAI 2000. Lecture Notes in Computer Science(), vol 1793. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10720076_15

Download citation

  • DOI: https://doi.org/10.1007/10720076_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67354-5

  • Online ISBN: 978-3-540-45562-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics