Abstract
A new method for learning probabilistic grid-based maps of the environment of a mobile robot is described. New contributions on the three major components of map learning, namely, sensor data fusion, exploration and position tracking, are proposed. In particular, new models of sensors and a way of sensor data fusion that takes advantage of multiple viewpoints are presented. A new approach to control the exploration of the environment taking advantages of local strategies but without losing the completeness of a global search is given. Furthermore, a robot position tracking algorithm, based on polar and rectangular correlations between laser range data and the map is also introduced. Experimental results for the proposed approach using a mobile robot simulator with odometer, ultrasonic and laser range sensors (implemented with laser pointers and a camera), moving in an indoor environment, are described.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Borenstein, J., Everett, B., Feng, L.: Navigating Mobile Robots: Systems and Techniques. A.K. Peter, Ltd., Wellesley (1996)
Elfes, A.: Using Occupancy Grids for Mobile Robot Perception and Navigation. IEEE Computer 22(6), 46–57 (1989)
Howard, H., Kitchen, L.: Generating Sonar Maps in Highly Specular Environments. In: Proceedings of the Fourth International Conference on Control, Automation, Robotics and Vision (December 1996)
Kuipers, B., Byun, Y.T.: A robust qualitative method for spatial learning in unknown environments. In: Proceedings of Eighth National Conference on Artificial Intelligence AAAI 1988. AAAI Press/The MIT Press, Cambridge (1988)
Kuipers, B., Byun, Y.T.: A robust exploration and mapping strategy based on a semantic hierarchy of spatial representations. Journal of Robotics and Autonomous Systems 8, 47–63 (1991)
Lee, D.: The Map-Building and Exploration of a Simple Sonar-Equipped Robot. Cambridge University Press, Cambridge (1996)
Leonard, J.J., Durrant-White, H.F., Cox, I.J.: Dynamic map building for an autonomous mobile robot. International Journal of Robotics Research 11(4), 89–96 (1992)
Lim, J.H., Cho, D.W.: Physically Based Sensor Modeling for a Sonar Map in a Specular Environment. In: Proc. IEEE/RSJ International Conference on Robots and Systems, pp. 62–67 (1992)
Matarïc, M.J.: A distributed model for mobile robot environment-learning and navigation. Master’s thesis. MIT, Cambridge (1990)
McKerrow, P.J.: Introduction to Robotics. In: Electronic Systems Engineering. Addison-Wesley, Reading (1991)
Moravec, H.P.: Sensor Fusion in Certainty Grids on Mobile Robots. AI Magazine 9(2), 61–74 (1988)
Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann Publishers, San Mateo (1988)
Rencken, W.D.: Concurrent localization and map building for mobile robots using ultrasonic sensors. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Yokohama, Japan, pp. 2129–2197 (1993)
Romero, L., Morales, E.: Uso de una red neuronal para la fusion de lecturas de sonares en robots moviles. Segundo Encuentro Nacional de Computacion (ENC 1999), Pachuca, Hidalgo, Mexico (1998)
Shigang, L., Ichiro, M., Hiroshi, I., Saburo, T.: Finding of 3D Structure by an Active-vision-based Mobile Robot. In: Proceedings of the IEEE International Conference on Robotics and Automation (1992)
Thrun, S., Bucken, A., Wolfram, B., et al.: Map Learning and High-Speed Navigation in RHINO. In: En Kortenkamp, D., Bonasso, R.P., y Murphy, R. (eds.) Artificial Intelligence and Mobile Robots. AAAI Press/The MIT Press (1998)
Thrun, S.: Learning Maps for Indoor Mobile Robot Navigation. Artificial Intelligence 99(1), 21–71 (1998)
Yamauchi, B., Schultz, A., Adams, W., Graves, K.: Exploration and Spatial Learning Research at NCARAI. In: Conference on Automated Learning and Discovery, June 11-13. Carnegie Mellon University, Pittsburg (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Romero, L., Morales, E., Sucar, E. (2000). Learning Probabilistic Grid-Based Maps for Indoor Mobile Robots Using Ultrasonic and Laser Range Sensors. In: Cairó, O., Sucar, L.E., Cantu, F.J. (eds) MICAI 2000: Advances in Artificial Intelligence. MICAI 2000. Lecture Notes in Computer Science(), vol 1793. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10720076_15
Download citation
DOI: https://doi.org/10.1007/10720076_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-67354-5
Online ISBN: 978-3-540-45562-2
eBook Packages: Springer Book Archive