[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Wordnet and Semidiscrete Decomposition for Sub-Symbolic Representation of Words

  • Conference paper
Biological and Artificial Intelligence Environments

Abstract

A methodology for sub-symbolic semantic encoding of words is presented. The methodology uses the standard, semantically highly-structured WordNet lexical database and the SemiDiscrete matrix Decomposition to obtain a vector representation with low memory requirements in a semantic n-space. The application of the proposed algorithm over all the WordNet words would lead to a useful tool for the sub-symbolic processing of texts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bellegarda, J.R. (2000). Exploiting latent semantic information in statistical language modeling. Proceedings of the IEEE, 88:1279–1296.

    Article  Google Scholar 

  • Burgess, C. and Lund, K. (2000). The dynamics of meaning in memory. Cognitive dynamics: Conceptual and Representational Change in Humans and Machines.E. Dietrich and A. Markman, Hillsdale, N.J, Lawrence Erlbaum Associates.

    Google Scholar 

  • Didion, J. (2002). Jwnl (java wordnet library). http://www.sourceforge.net.

    Google Scholar 

  • Hofmann, T. (2000). Learning the similarity of documents: An information-geometric approach to document retrieval and categorization. Advances in Neural Information Processing Systems, S.A. Solla, T.K. Leen and K.R. Muller (eds, pages 914–920.

    Google Scholar 

  • Honkela, T., Pulkki, V., and Kohonen., T. (1995). Contextual relations of words in grimm tales, analyzed by self-organizing map. Proceedings of International Conference on Artificial Neural Networks, ICANN-95., pages 3–7.

    Google Scholar 

  • Kolda, T.G. and O’Leary., D.P. (2000). Computation and uses of the semidiscrete matrix decomposition. Trans. Math. Software.

    Google Scholar 

  • Landauer, T.K., Foltz, P.W., and Laham., D. (1998). Introduction to latent semantic analysis. Discourse Processes, 25:259–284.

    Article  Google Scholar 

  • Miller, G.A., Beckwidth, R., Fellbaum, C., Gross, D., and Miller, K.J. (1990). Introduction to wordnet: An on-line lexical database. International Journal of Lexicography, 3:235–244.

    Article  Google Scholar 

  • Sahlgren, M., Karlgren, J., Cöster, R., and Järvinen, T. (2002). Sics at clef 2002: Automatic query expansion using random indexing. The CLEF 2002 Workshop, September 19–20, 2002, Rome, Italy.

    Google Scholar 

  • Sebastiani, F. (2002). Machine learning in automated text categorization. ACM Computing Surveys, 34:1.

    Article  MathSciNet  Google Scholar 

  • Siivola, V. (2000). Language modeling based on neural clustering of words. IDIAP-Com 02, Martigny, Switzerland.

    Google Scholar 

  • Siolas, G. and d’Alche Buc, F. (2000). Support vector machines based on a semantic kernel for text categorization. Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, IJCNN, 5:205–209.

    Article  Google Scholar 

  • Sloan Jr, K.R. and Tanimoto, S.L. (1979). Progressive refinement of raster images. IEEE Transactions on Computers, 28:871–874.

    Article  Google Scholar 

  • Vassallo, G., Pilato, G., Maggio, A., Puglisi, A., and Gaglio, S. (2003). Sub-symbolic encoding of words. Proc. of 8-th Congress of AI*IA, Lecture Notes in Artificial Intelligence, 2829:449–461.

    Google Scholar 

  • Widdows, D., Cederberg, S., and Dorow, B. (2002). Visualisation techniques for analysing meaning. Fifth International Conference on Text, Speech and Dialogue, Brno, Czech Republic, pages 107–115.

    Google Scholar 

  • Yang, H. and Lee, C. (2000). Automatic category generation for text documents by self-organizing maps. Proc. of IEEE-INNS-ENNS International Joint Conference on Neural Networks, 3:581–586.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Pilato, G., Vassallo, G., Gaglio, S. (2005). Wordnet and Semidiscrete Decomposition for Sub-Symbolic Representation of Words. In: Apolloni, B., Marinaro, M., Tagliaferri, R. (eds) Biological and Artificial Intelligence Environments. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3432-6_23

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3432-6_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3431-2

  • Online ISBN: 978-1-4020-3432-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics