[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Recent Applications of Neural Networks in Bioinformatics

  • Conference paper
Biological and Artificial Intelligence Environments

Abstract

In the post-genomic era, bioinformatics methods play a central role in understanding vast amounts of biological data. Due to their ability to find arbitrarily complex patterns within these data, neural networks play a unique, exciting and pivotal role in areas as diverse as protein structure and function prediction. This paper presents a critical overview of recent advances in bioinformatics which have utilised neural network methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ahmad, S., Gromiha, M. M., and Sarai, A. (2003). Real value prediction of solvent accessibility from amino acid sequence. Proteins: Structure, Function and Genetics, 50:629–635.

    Article  Google Scholar 

  • Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, Z., Miller, W., and Lipman, D. J. (1997). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res., 25:3389–3402.

    Article  Google Scholar 

  • Baldi, P., Brunak, S., Frasconi, P., Pallastri, G., and Soda, S. (2000). Bidirectional Dynamics for Protein Secondary Structure Prediction in Sequence Learning: Paradigms, Algorithms, and Applications, R.Sun and C.L. Giles. Springer.

    Google Scholar 

  • Bindewald, E., Cestaro, A., Heiler, M., and Tosatto, S. C. E. (2003). Manifold: protein fold recognition based on secondary structure, sequence similarity and enzyme classification. Protein Science, 16:785–789.

    Google Scholar 

  • Browne, A., Hudson, B., Whitley, D., Ford, M., and Picton, P. (2004). Biological data mining with neural networks: implementation and applications of a flexible decision tree extration algorithm to genomic problem domains. Neurocomputing, 57:275–293.

    Article  Google Scholar 

  • Chou, K-C. and Cai, Y-D. (2003). Predicting protein quaternary structure by pseudo amino acid composition. Proteins: Structure, Function and Genetics, 53:282–289.

    Article  Google Scholar 

  • Cia, Y-D, Liu, X-J, and Chou, K-C (2002). Artificial neural network model for predicting protein subcellular location. Computers and Chemistry, 26:179–182.

    Article  Google Scholar 

  • Cuff, C. A. and Barton, G. J. (2000). Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins: Structure, Function and Genetics, 40:502–511.

    Article  Google Scholar 

  • Fahlman, S. E. and Lebiere, C. (1990). The Cascade-correlation Learning Architecture, Advances in Neural Information Processing Systems 2. Kaufmann Publishers, Los Altos, CA.

    Google Scholar 

  • Guermeur, Y., Pollastri, G., Elisseeff, A., Zelus, D., Paugam-Moisy, H., and Baldi, P. (2004). Combining protein secondary structure prediction models with ensemble methods of optimal complexity. Neurocomputing, 56:305–327.

    Article  Google Scholar 

  • Guo, J., Dong, X., Dongsup, K., and Ying, X. (2003). Improving the performance of domain-parser for structural domain partition using neural network. Nucleic Acids Res., 31:944–952.

    Article  Google Scholar 

  • Gutteridge, A., Bartlett, G. J., and Thornton, J. M. (2003). Using a neural network and spatial clustering to predict the location of active sites in enzymes. J. Mol. Biol., 330:719–734.

    Article  Google Scholar 

  • Hirst, J. D. and Sternberg, M. J. E. (1992). Prediction of structural and functional features of protein and nucleic-acid sequences by artificial neural networks. Biochemistry, 31:7211–7218.

    Article  Google Scholar 

  • Jones, D. T. (1999). Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol., 292:195–202.

    Article  Google Scholar 

  • Jones, D. T. and Ward, J. J. (2003). Prediction of disordered regions in proteins from position specific scoring matrices. Proteins: Structure, Function and Genetics, 53:573–578.

    Article  Google Scholar 

  • Kaur, H. and Raghava, G. P. S. (2003a). A neural-network based method for prediction of gamma-turns in proteins from multiple sequence alignment. Protein Science, 12:923–929.

    Article  Google Scholar 

  • Kaur, H. and Raghava, G. P. S. (2003b). Prediction of beta-turns in proteins from multiple alignment using neural network. Protein Science, 12:627–634.

    Article  Google Scholar 

  • Kaur, H. and Raghava, G. P. S. (2004). Prediction of alpha-turns in proteins using PSI-BLAST profiles and secondary structure information. Proteins: Structure, Function and Genetics, 55:83–90.

    Article  Google Scholar 

  • Keil, M., Exner, T., and Brickmann, J. (2004). Pattern recognition strategies for molecular surfaces III. binding site prediction with a neural network. Journal of Computational Chemistry, 25:779–789.

    Article  Google Scholar 

  • Kuhn, M., Meiler, J., and Baker, D. (2004). Strand-loop-strand motifs: Prediction of hairpins and diverging turns in proteins. Proteins: Structure, Function and Genetics, 54:282–288.

    Article  Google Scholar 

  • Lin, K., May, A. C. W., and Taylor, W. R. (2002). Amino acid encoding schemes from protein structure alignments: Multi-dimensional vectors to describe residue types. J. Theor. Biol., 216:361–365.

    Article  MathSciNet  Google Scholar 

  • Naderi-Manesh, H., Sadgehi, M., Arab, S., and Movahedi, A. A Moosavi (2001). Prediction of protein surface accessibility with information theory. Proteins: Structure, Function and Genetics, 42:452–459.

    Article  Google Scholar 

  • Nair, R. and Rost, B. (2003). Better prediction of sub-cellular localization by combining evolutionary and structural informatioin. Proteins: Structure, Function and Genetics, 53:917–930.

    Article  Google Scholar 

  • Ofran, Y. and Rost, B. (2003). Predicted protein-protein interaction sites from local sequence information. FEBS Letters, 544:236–239.

    Article  Google Scholar 

  • Qian, N. and Sejnowski, T. J. (1988). Predicting the secondary structure of globular proteins using neural network models. J. Mol. Biol., 202:865–884.

    Article  Google Scholar 

  • Rost, B. and Sander, C. (1993). Progress in protein-structure prediction. Trends Biochem Sci, 18:120–123.

    Article  Google Scholar 

  • Rost, B. and Sander, C. (1994). Combining evolutionary information and neural networks to predict protein secondary structure. Proteins: Structure, Function and Genetics, 19:55–72.

    Article  Google Scholar 

  • Sheperd, A. J., Gorse, D., and Thornton, J. M. (2003). Novel approach to the recognition of protein architecture from sequence using fourier analysis and neural networks. Proteins: Structure, Function and Genetics, 50:290–302.

    Article  Google Scholar 

  • Wood, M. J. and Hirst, J. D. (2004). Predicting protein secondary structure by cascade-correlation neural networks. Bioinformatics, 20:419–420.

    Article  Google Scholar 

  • Xu, Y., Xu, D., and Gabow, H. N. (2000). Protein domain decomposition using a graph-theoretic approach. Bioinformatics, 16:1091–1104.

    Article  Google Scholar 

  • Yang, Z. R. and Chou, K-C. (2004). Predicting the linkage sites in glycoproteins using bio-basis function neural network. Bioinformatics, 20:903–908.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Wood, M.J., Hirst, J.D. (2005). Recent Applications of Neural Networks in Bioinformatics. In: Apolloni, B., Marinaro, M., Tagliaferri, R. (eds) Biological and Artificial Intelligence Environments. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3432-6_11

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3432-6_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3431-2

  • Online ISBN: 978-1-4020-3432-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics