Abstract
We give a didactic introduction to the use of the column generation technique in linear and in particular in integer programming. We touch on both, the relevant basic theory and more advanced ideas which help in solving large scale practical problems. Our discussion includes embedding Dantzig-Wolfe decomposition and Lagrangian relaxation within a branch-and-bound framework, deriving natural branching and cutting rules by means of a so-called compact formulation, and understanding and influencing the behavior of the dual variables during column generation. Most concepts are illustrated via a small example. We close with a discussion of the classical cutting stock problem and some suggestions for further reading.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ahuja, R.K., Magnanti, T.L., and Orlin, J.B. (1993). Network Flows: Theory, Algorithms and Applications. Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
Barnhart, C., Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W.P., and Vance, P.H. (1998). Branch-and-price: Column generation for solving huge integer programs. Operations Research, 46(3):316–329.
Ben Amor, H. and Desrosiers, J. (2003). A proximal trust region algorithm for column generation stabilization. Les Cahiers du GERAD G-2003-43, HEC, Montréal, Canada. Forthcoming in: Computers & Operations Research.
Ben Amor, H., Desrosiers, J., and Valério de Carvalho, J.M. (2003). Dual-optimal inequalities for stabilized column generation. Les Cahiers du GERAD G-2003-20, HEC, Montréal, Canada.
Ben Amor, H. and Valério de Carvalho, J.M. (2004). Cutting stock problems. In this book.
Dantzig, G.B. and Wolfe, P. (1960). Decomposition principle for linear programs. Operations Research, 8:101–111.
Desaulniers, G., Desrosiers, J., Ioachim, I., Solomon, M.M., Soumis, F., and Villeneuve, D. (1998). A unified framework for deterministic time constrained vehicle routing and crew scheduling problems. In: Fleet Management and Logistics (T.G. Crainic and G. Laporte, eds.), pp. 57–93, Kluwer, Norwell, MA.
Desaulniers, G., Desrosiers, J., and Solomon, M.M. (2001). Accelerating strategies in column generation methods for vehicle routing and crew scheduling problems. In: Essays and Surveys in Metaheuristics (C.C. Ribeiro and P. Hansen, eds.), pp. 309–324, Kluwer, Boston.
du Merle, O., Villeneuve, D., Desrosiers, J., and Hansen, P. (1999). Stabilized column generation. Discrete Mathematics, 194:229–237.
Elhallaoui, I., Villeneuve, D., Soumis, F., and Desaulniers, G. (2003). Dynamic aggregation of set partitioning constraints in column generation. Les Cahiers du GERAD G-2003-45, HEC, Montréal, Canada. Forthcoming in: Operations Research.
Ford, L.R. and Fulkerson, D.R. (1958). A suggested computation for maximal multicommodity network flows. Management Science, 5:97–101.
Geoffrion, A.M. (1974). Lagrangean relaxation for integer programming. Mathematical Programming Study (Series), 2:82–114.
Gilmore, P.C. and Gomory, R.E. (1961). A linear programming approach to the cutting-stock problem. Operations Research, 9:849–859.
Gilmore, P.C. and Gomory, R.E. (1963). A linear programming approach to the cutting stock problem. Part II. Operations Research, 11:863–888.
Goffin, J.-L. and Vial, J.-Ph. (1999). Convex nondifferentiable optimization: A survey focused on the analytic center cutting plane method. Technical Report 99.02, Logilab, Université de Genève. Forthcoming in: Optimization Methods & Software.
Guignard, M. (2004). Lagrangean relaxation. In: Handbook of Applied Optimization (M. Resende and P. Pardalos, eds.), Oxford University Press.
Hiriart-Urruty, J.-B. and Lemaréchal, C. (1993). Convex Analysis and Minimization Algorithms, Part 2: Advanced Theory and Bundle Methods, volume 306, Grundlehren der mathematischen Wissenschaften, Springer, Berlin.
Kantorovich, L. (1960). Mathematical methods of organising and planning production. Management Science, 6:366–422.
Kelley Jr., J.E. (1961). The cutting-plane method for solving convex programs. Journal of the Society for Industrial and Applied Mathematics, 8(4):703–712.
Lasdon, L.S. (1970). Optimization Theory for Large Systems. Macmillan, London.
Lübbecke, M.E. and Desrosiers, J. (2002). Selected topics in column generation. Les Cahiers du GERAD G-2002-64, HEC, Montréal, Canada. Forthcoming in: Operations Research.
Nemhauser, G.L. and Wolsey, L.A. (1988). Integer and Combinatorial Optimization. John Wiley & Sons, Chichester.
Mamer, J.W. and McBride, R.D. (2000). A decomposition-based pricing procedure for large-scale linear programs—An application to the linear multicommodity flow problem. Management Science, 46(5):693–709.
Marsten, R.E. (1975). The use of the boxstep method in discrete optimization. Mathematical Programming Study, 3:127–144.
Marsten, R.E., Hogan, W.W., and Blankenship, J.W. (1975). The Boxstep method for large-scale optimization. Operations Research, 23:389–405.
Poggi de Aragão, M. and Uchoa, E. (2003). Integer program reformulation for robust branch-and-cut-and-price algorithms. In: Proceedings of the Conference Mathematical Program in Rio: A Conference in Honor of Nelson Maculan, pp. 56–61.
Schrijver, A. (1986). Theory of Linear and Integer Programming. John Wiley & Sons, Chichester.
Valério de Carvalho, J.M. (1999). Exact solution of bin-packing problems using column generation and branch-and-bound. Annals of Operations Research, 86:629–659.
Valério de Carvalho, J.M. (2002). LP models for bin-packing and cutting stock problems. European Journal of Operational Research, 141(2):253–273.
Valério de Carvalho, J.M. (2003). Using extra dual cuts to accelerate convergence in column generation. Forthcoming in: INFORMS Journal of Computing.
Vanderbeck, F. (2000). On Dantzig-Wolfe decomposition in integer programming and ways to perform branching in a branch-and-price algorithm. Operations Research, 48(1):111–128.
Vanderbeck, F. (2004). Implementing mixed integer column generation. In this book.
Vanderbeck, F. and Wolsey, L.A. (1996). An exact algorithm for IP column generation. Operations Research Letters, 19:151–159.
Villeneuve, D., Desrosiers, J., Lübbecke, M.E., and Soumis, F. (2003). On compact formulations for integer programs solved by column generation. Les Cahiers du GERAD G-2003-06, HEC, Montréal, Canada. Forthcoming in: Annals of Operations Research.
Walker, W.E. (1969). A method for obtaining the optimal dual solution to a linear program using the Dantzig-Wolfe decomposition. Operations Research, 17:368–370.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer Science+Business Media, Inc.
About this chapter
Cite this chapter
Desrosiers, J., Lübbecke, M.E. (2005). A Primer in Column Generation. In: Desaulniers, G., Desrosiers, J., Solomon, M.M. (eds) Column Generation. Springer, Boston, MA. https://doi.org/10.1007/0-387-25486-2_1
Download citation
DOI: https://doi.org/10.1007/0-387-25486-2_1
Publisher Name: Springer, Boston, MA
Print ISBN: 978-0-387-25485-2
Online ISBN: 978-0-387-25486-9
eBook Packages: Business and EconomicsBusiness and Management (R0)