[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Primer in Column Generation

  • Chapter
Column Generation

Abstract

We give a didactic introduction to the use of the column generation technique in linear and in particular in integer programming. We touch on both, the relevant basic theory and more advanced ideas which help in solving large scale practical problems. Our discussion includes embedding Dantzig-Wolfe decomposition and Lagrangian relaxation within a branch-and-bound framework, deriving natural branching and cutting rules by means of a so-called compact formulation, and understanding and influencing the behavior of the dual variables during column generation. Most concepts are illustrated via a small example. We close with a discussion of the classical cutting stock problem and some suggestions for further reading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ahuja, R.K., Magnanti, T.L., and Orlin, J.B. (1993). Network Flows: Theory, Algorithms and Applications. Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

    Google Scholar 

  • Barnhart, C., Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W.P., and Vance, P.H. (1998). Branch-and-price: Column generation for solving huge integer programs. Operations Research, 46(3):316–329.

    MathSciNet  Google Scholar 

  • Ben Amor, H. and Desrosiers, J. (2003). A proximal trust region algorithm for column generation stabilization. Les Cahiers du GERAD G-2003-43, HEC, Montréal, Canada. Forthcoming in: Computers & Operations Research.

    Google Scholar 

  • Ben Amor, H., Desrosiers, J., and Valério de Carvalho, J.M. (2003). Dual-optimal inequalities for stabilized column generation. Les Cahiers du GERAD G-2003-20, HEC, Montréal, Canada.

    Google Scholar 

  • Ben Amor, H. and Valério de Carvalho, J.M. (2004). Cutting stock problems. In this book.

    Google Scholar 

  • Dantzig, G.B. and Wolfe, P. (1960). Decomposition principle for linear programs. Operations Research, 8:101–111.

    Google Scholar 

  • Desaulniers, G., Desrosiers, J., Ioachim, I., Solomon, M.M., Soumis, F., and Villeneuve, D. (1998). A unified framework for deterministic time constrained vehicle routing and crew scheduling problems. In: Fleet Management and Logistics (T.G. Crainic and G. Laporte, eds.), pp. 57–93, Kluwer, Norwell, MA.

    Google Scholar 

  • Desaulniers, G., Desrosiers, J., and Solomon, M.M. (2001). Accelerating strategies in column generation methods for vehicle routing and crew scheduling problems. In: Essays and Surveys in Metaheuristics (C.C. Ribeiro and P. Hansen, eds.), pp. 309–324, Kluwer, Boston.

    Google Scholar 

  • du Merle, O., Villeneuve, D., Desrosiers, J., and Hansen, P. (1999). Stabilized column generation. Discrete Mathematics, 194:229–237.

    Article  MathSciNet  Google Scholar 

  • Elhallaoui, I., Villeneuve, D., Soumis, F., and Desaulniers, G. (2003). Dynamic aggregation of set partitioning constraints in column generation. Les Cahiers du GERAD G-2003-45, HEC, Montréal, Canada. Forthcoming in: Operations Research.

    Google Scholar 

  • Ford, L.R. and Fulkerson, D.R. (1958). A suggested computation for maximal multicommodity network flows. Management Science, 5:97–101.

    MathSciNet  Google Scholar 

  • Geoffrion, A.M. (1974). Lagrangean relaxation for integer programming. Mathematical Programming Study (Series), 2:82–114.

    MATH  MathSciNet  Google Scholar 

  • Gilmore, P.C. and Gomory, R.E. (1961). A linear programming approach to the cutting-stock problem. Operations Research, 9:849–859.

    MathSciNet  Google Scholar 

  • Gilmore, P.C. and Gomory, R.E. (1963). A linear programming approach to the cutting stock problem. Part II. Operations Research, 11:863–888.

    Google Scholar 

  • Goffin, J.-L. and Vial, J.-Ph. (1999). Convex nondifferentiable optimization: A survey focused on the analytic center cutting plane method. Technical Report 99.02, Logilab, Université de Genève. Forthcoming in: Optimization Methods & Software.

    Google Scholar 

  • Guignard, M. (2004). Lagrangean relaxation. In: Handbook of Applied Optimization (M. Resende and P. Pardalos, eds.), Oxford University Press.

    Google Scholar 

  • Hiriart-Urruty, J.-B. and Lemaréchal, C. (1993). Convex Analysis and Minimization Algorithms, Part 2: Advanced Theory and Bundle Methods, volume 306, Grundlehren der mathematischen Wissenschaften, Springer, Berlin.

    Google Scholar 

  • Kantorovich, L. (1960). Mathematical methods of organising and planning production. Management Science, 6:366–422.

    MATH  MathSciNet  Google Scholar 

  • Kelley Jr., J.E. (1961). The cutting-plane method for solving convex programs. Journal of the Society for Industrial and Applied Mathematics, 8(4):703–712.

    Article  MATH  MathSciNet  Google Scholar 

  • Lasdon, L.S. (1970). Optimization Theory for Large Systems. Macmillan, London.

    Google Scholar 

  • Lübbecke, M.E. and Desrosiers, J. (2002). Selected topics in column generation. Les Cahiers du GERAD G-2002-64, HEC, Montréal, Canada. Forthcoming in: Operations Research.

    Google Scholar 

  • Nemhauser, G.L. and Wolsey, L.A. (1988). Integer and Combinatorial Optimization. John Wiley & Sons, Chichester.

    Google Scholar 

  • Mamer, J.W. and McBride, R.D. (2000). A decomposition-based pricing procedure for large-scale linear programs—An application to the linear multicommodity flow problem. Management Science, 46(5):693–709.

    Article  Google Scholar 

  • Marsten, R.E. (1975). The use of the boxstep method in discrete optimization. Mathematical Programming Study, 3:127–144.

    MATH  Google Scholar 

  • Marsten, R.E., Hogan, W.W., and Blankenship, J.W. (1975). The Boxstep method for large-scale optimization. Operations Research, 23:389–405.

    MathSciNet  Google Scholar 

  • Poggi de Aragão, M. and Uchoa, E. (2003). Integer program reformulation for robust branch-and-cut-and-price algorithms. In: Proceedings of the Conference Mathematical Program in Rio: A Conference in Honor of Nelson Maculan, pp. 56–61.

    Google Scholar 

  • Schrijver, A. (1986). Theory of Linear and Integer Programming. John Wiley & Sons, Chichester.

    Google Scholar 

  • Valério de Carvalho, J.M. (1999). Exact solution of bin-packing problems using column generation and branch-and-bound. Annals of Operations Research, 86:629–659.

    Article  MATH  MathSciNet  Google Scholar 

  • Valério de Carvalho, J.M. (2002). LP models for bin-packing and cutting stock problems. European Journal of Operational Research, 141(2):253–273.

    Article  MATH  MathSciNet  Google Scholar 

  • Valério de Carvalho, J.M. (2003). Using extra dual cuts to accelerate convergence in column generation. Forthcoming in: INFORMS Journal of Computing.

    Google Scholar 

  • Vanderbeck, F. (2000). On Dantzig-Wolfe decomposition in integer programming and ways to perform branching in a branch-and-price algorithm. Operations Research, 48(1):111–128.

    Article  MATH  MathSciNet  Google Scholar 

  • Vanderbeck, F. (2004). Implementing mixed integer column generation. In this book.

    Google Scholar 

  • Vanderbeck, F. and Wolsey, L.A. (1996). An exact algorithm for IP column generation. Operations Research Letters, 19:151–159.

    Article  MathSciNet  Google Scholar 

  • Villeneuve, D., Desrosiers, J., Lübbecke, M.E., and Soumis, F. (2003). On compact formulations for integer programs solved by column generation. Les Cahiers du GERAD G-2003-06, HEC, Montréal, Canada. Forthcoming in: Annals of Operations Research.

    Google Scholar 

  • Walker, W.E. (1969). A method for obtaining the optimal dual solution to a linear program using the Dantzig-Wolfe decomposition. Operations Research, 17:368–370.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Desrosiers, J., Lübbecke, M.E. (2005). A Primer in Column Generation. In: Desaulniers, G., Desrosiers, J., Solomon, M.M. (eds) Column Generation. Springer, Boston, MA. https://doi.org/10.1007/0-387-25486-2_1

Download citation

Publish with us

Policies and ethics