[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Learning Rules and Clusters for Anomaly Detection in Network Traffic

  • Chapter
Managing Cyber Threats

Part of the book series: Massive Computing ((MACO,volume 5))

Abstract

Much of the intrusion detection research focuses on signature (misuse) detection, where models are built to recognize known attacks. However, signature detection, by its nature, cannot detect novel attacks. Anomaly detection focuses on modeling the normal behavior and identifying significant deviations, which could be novel attacks. In this chapter we explore two machine learning methods that can construct anomaly detection models from past behavior. The first method is a rule learning algorithm that characterizes normal behavior in the absence of labeled attack data. The second method uses a clustering algorithm to identify outliers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. C. Aggarwal and P. Yu. Outlier detection for high dimensional data. In Proc. SIGMOD, 2001.

    Google Scholar 

  2. R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. In Proc. ACM SIGMOD Conf., pages 207–216, 1993.

    Google Scholar 

  3. F. Apap, A. Honig, S. Hershkop, E. Eskin, and S. Stolfo. Detecting malicious software by monitoring anomalous windows registry accesses. In Proc. Fifth Intl. Symp. Recent Advances in Intrusion Detection (RAID), 2002.

    Google Scholar 

  4. D. Barbara, N. Wu, and S. Jajodia. Detecting novel network intrusions using bayes estimators. In Proc. SIAM Intl. Conf. Data Mining, 2001.

    Google Scholar 

  5. M. Breunig, H. Kriegel, R. Ng, and J. Sander. Lof: Identifying density-based local outliers. In Proc. SIGMOD, 2000.

    Google Scholar 

  6. P. Clark and T. Niblett. The CN2 induction algorithm. Machine Learning, 3:261–285, 1989.

    Google Scholar 

  7. Silicon Defense. SPADE, 2001. http://www.silicondefense.com/software/spice/.

    Google Scholar 

  8. P. Domingos and M. Pazzani. On the optimality of the simple bayesian classifier under zero-one loss. Machine Learning, 29:103–130, 1997.

    Article  Google Scholar 

  9. R. Duda and P. Hart. Pattern classification and scene analysis. Wiley, New York, NY, 1973.

    Google Scholar 

  10. E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo. A geometric framework for unsupervised anomaly detection: Detecting intrusions in unlabeled data. In D. Barbara and S. Jajodia, editors, Applications of Data Mining in Computer Security. Kluwer, 2002.

    Google Scholar 

  11. S. Forrest, S. Hofmeyr, and A. Somayaji. Computer immunology. Comm. ACM, 4(10):88–96, 1997.

    Article  Google Scholar 

  12. S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longstaff. A sense of self for unix processes. In Proc. of 1996 IEEE Symp. on Computer Security and Privacy, 1996.

    Google Scholar 

  13. A. Ghosh, A. Schwartzbard, and M. Schatz. Learning program behavior profiles for in-trusion detection. In Proc. 1st USENIX Workshop on Intrusion Detection and Network Monitoring, 1999.

    Google Scholar 

  14. J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann, 2000.

    Google Scholar 

  15. K. Kendall. A database of computer attacks for the evaluation of intrusion detection systems. Master’s thesis, EECS Dept., MIT, 1999.

    Google Scholar 

  16. E. Knorr and T. Ng. Algorithms for mining distance-based outliers in large datasets. In Proc. VLDB, 1998.

    Google Scholar 

  17. C. Krugel, T. Toth, and E. Kirda. Service specific anomaly detection for network intrusion detection. In Proc. ACM Symp. on Applied Computing, 2002.

    Google Scholar 

  18. T. Lane and C. Brodley. Temporal sequence learning and data reduction for anomaly detection. ACM Trans. Information and System Security, 1999.

    Google Scholar 

  19. R. Lippmann, J. Haines, D. Fried, J. Korba, and K. Das. The 1999 DARPA off-line intrusion detection evaluation. Computer Networks, 34:579–595, 2000.

    Article  Google Scholar 

  20. M. Mahoney and P. Chan. Learning models of network traffic for detecting novel attacks. Technical Report CS-2002-08, Florida Inst. of Tech., Melbourne, FL, 2002. http://www.cs.fit.edu/~pkc/papers/cs-2002-08.pdf.

    Google Scholar 

  21. M. Mahoney and P. Chan. Learning nonstationary models of normal network traffic for detecting novel attacks. In Proc. Eighth Intl. Conf. on Knowledge Discovery and Data Mining, pages 376–385, 2002.

    Google Scholar 

  22. M. Mahoney and P. Chan. Learning Rules for Anomaly Detection of Hostile Network Traffic. Technical Report CS-2003-16, Florida Inst. of Tech., Melbourne, FL, 2003. http://www.cs.fit.edu/~pkc/papers/cs-2003-16.pdf.

    Google Scholar 

  23. T. Mitchell. Machine Learning. McGraw Hill, 1997.

    Google Scholar 

  24. P. Neumann and P. Porras. Experience with EMERALD to date. In Proc. 1st USENIX Workshop on Intrusion Detection and Network Monitoring, pages 73–80, 1999.

    Google Scholar 

  25. T. Niblett. Constructing decision trees in noisy domain. In Proc. 2nd European Working Session on Learning, pages 67–78, 1987.

    Google Scholar 

  26. V. Paxson. Bro: A system for detecting network intruders in real-time. In Proc. 7th USENIX Security Symp., 1998.

    Google Scholar 

  27. V. Paxson and S. Floyd. The failure of poisson modeling. IEEE/ACM Transactions on Networking, 3:226–24, 1995.

    Article  Google Scholar 

  28. J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, 1987.

    Google Scholar 

  29. L. Portnoy. Intrusion detection with unlabeled data using clustering. Undergraduate Thesis, Columbia University, 2000.

    Google Scholar 

  30. F. Provost and P. Domingos. Tree induction for probability-based rankings. Machine Learning, 2002.

    Google Scholar 

  31. S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for mining outliers from large data sets. In Proc. SIGMOD, 2000.

    Google Scholar 

  32. M. Roesch. Snort — lightweight intrusion detection for networks. In USENIX LISA, 1999.

    Google Scholar 

  33. S. Salvador and P. Chan. Learning states and rules for time-series anomaly detection. Technical Report CS-2003-05, Florida Inst. of Tech., Melbourne, FL, 2003. http://www.cs.fit.edu/~pkc/papers/cs-2003-05.pdf.

    Google Scholar 

  34. R. Sekar, M. Bendre, D. Dhurjati, and P. Bollinen. A fast automaton-based method for detecting anomalous program behaviors. In Proc. IEEE Symp. Security and Privacy, 2001.

    Google Scholar 

  35. K. Sequira and M. Zaki. ADMIT: Anomaly-based data mining for intrusions. In Proc. KDD, 2002.

    Google Scholar 

  36. S. Staniford, J. Hoagland, and J. McAlerney. Practical automated detection of stealthy portscans. J. Computer Security, 2002.

    Google Scholar 

  37. A. Valdes and K. Skinner. Adaptive model-based monitoring for cyber attack detection. In Proc. RAID, pages 80–92, 2000.

    Google Scholar 

  38. I. Witten and T. Bell. The zero-frequency problem: estimating the probabilities of novel events in adaptive text compression. IEEE Trans. on Information Theory, 37(4): 1085–1094, 1991.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Chan, P.K., Mahoney, M.V., Arshad, M.H. (2005). Learning Rules and Clusters for Anomaly Detection in Network Traffic. In: Kumar, V., Srivastava, J., Lazarevic, A. (eds) Managing Cyber Threats. Massive Computing, vol 5. Springer, Boston, MA. https://doi.org/10.1007/0-387-24230-9_3

Download citation

  • DOI: https://doi.org/10.1007/0-387-24230-9_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-24226-2

  • Online ISBN: 978-0-387-24230-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics