[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Reconstructing Three-Dimensional Bluff Body Wake from Sectional Flow Fields with Convolutional Neural Networks

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

The recent development of high-performance computing enables us to generate spatio-temporal high-resolution data of nonlinear dynamical systems and to analyze them for a deeper understanding of their complex nature. This trend can be found in a wide range of science and engineering, which suggests that detailed investigations on efficient data handling in physical science must be required in the future. This study considers the use of convolutional neural networks (CNNs) to achieve efficient data storage and estimation of scientific big data derived from nonlinear dynamical systems. The CNN is used to reconstruct three-dimensional data from a few numbers of two-dimensional sections in a computationally friendly manner. The present model is a combination of two- and three-dimensional CNNs, which allows users to save only some of the two-dimensional sections to reconstruct the volumetric data. As examples, we consider a flow around a square cylinder at the diameter-based Reynolds number \(Re_D = 300\). We demonstrate that volumetric fluid flow data can be reconstructed with the present method from as few as five sections. Furthermore, we propose a combination of the present CNN-based reconstruction with an adaptive sampling-based super-resolution analysis to augment the data compressibility. Our report can serve as a bridge toward practical data handling for not only fluid mechanics but also a broad range of physical sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of Data and Materials

Upon reasonable request.

Code Availability

Available at https://github.com/MitsuMatsu/2D-3D-CNN

References

  1. Moore GE. Cramming more components onto integrated circuits. Electronics. 1965;38:1–4.

    Google Scholar 

  2. Kajishima T, Taira K. Computational fluid dynamics. Cham: Springer International Publishing, 2017;(1).

  3. Brunton SL, Noack BR, Koumoutsakos P. Machine learning for fluid mechanics. Ann Rev Fluid Mech. 2020;52:477–508.

    Article  MathSciNet  ADS  Google Scholar 

  4. Kutz JN. Deep learning in fluid dynamics. J Fluid Mech. 2017;814:1–4.

    Article  ADS  Google Scholar 

  5. Brunton SL, Hemati MS, Taira K. Special issue on machine learning and data-driven methods in fluid dynamics. Theor Comput Fluid Dyn. 2020;34(4):333–7.

    Article  MathSciNet  Google Scholar 

  6. Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science. 2006;313(5786):504–7.

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  7. Taira K, Hemati MS, Brunton SL, Sun Y, Duraisamy K, Bagheri S, Dawson S, Yeh C-A. Modal analysis of fluid flows: applications and outlook. AIAA J. 2020;58(3):998–1022.

    Article  ADS  Google Scholar 

  8. Nóvoa A, Magri L. Real-time thermoacoustic data assimilation. J Fluid Mech. 2022;948:A35.

    Article  MathSciNet  ADS  Google Scholar 

  9. Milano M, Koumoutsakos P. Neural network modeling for near wall turbulent flow. J Comput Phys. 2002;182:1–26.

    Article  CAS  ADS  Google Scholar 

  10. Glaws A, King R, Sprague M. Deep learning for in situ data compression of large turbulent flow simulations. Phys Rev Fluids. 2020;5:114602.

    Article  ADS  Google Scholar 

  11. Morimoto M, Fukami K, Zhang K, Nair AG, Fukagata K. Convolutional neural networks for fluid flow analysis: toward effective metamodeling and low-dimensionalization. Theor Comput Fluid Dyn. 2021;35(5):633–58.

    Article  MathSciNet  Google Scholar 

  12. Eivazi H, Le Clainche S, Hoyas S, Vinuesa R. Towards extraction of orthogonal and parsimonious non-linear modes from turbulent flows. Expert Syst Appl. 2022;202:117038.

    Article  Google Scholar 

  13. Le Clainche S, Ferrer E, Gibson S, Cross E, Parente A, Vinuesa R. Improving aircraft performance using machine learning: a review. Aerosp Sci Technol. 2023;138:108354.

    Article  Google Scholar 

  14. Yousif MZ, Yu L, Lim H-C. Physics-guided deep learning for generating turbulent inflow conditions. J. Fluid Mech., 2022;936

  15. Doan NAK, Polifke W, Magri L. Auto-encoded reservoir computing for turbulence learning. In International Conference on Computational Science, 2021;344–351. Springer.

  16. Omata N, Shirayama S. A novel method of low-dimensional representation for temporal behavior of flow fields using deep autoencoder. AIP Adv. 2019;9(1):015006.

    Article  ADS  Google Scholar 

  17. Hasegawa K, Fukami K, Murata T, Fukagata K. Machine-learning-based reduced-order modeling for unsteady flows around bluff bodies of various shapes. Theor Comput Fluid Dyn. 2020;34(4):367–83.

    Article  MathSciNet  Google Scholar 

  18. Hasegawa K, Fukami K, Murata T, Fukagata K. Data-driven reduced order modeling of flows around two-dimensional bluff bodies of various shapes. ASME-JSME-KSME Joint Fluids Engineering Conference, San Francisco, USA, (Paper 5079), 2019.

  19. Maulik R, Lusch B, Balaprakash P. Reduced-order modeling of advection-dominated systems with recurrent neural networks and convolutional autoencoders. Phys Fluids. 2021;33(3):037106.

    Article  CAS  ADS  Google Scholar 

  20. Hasegawa K, Fukami K, Murata T, Fukagata K. CNN-LSTM based reduced order modeling of two-dimensional unsteady flows around a circular cylinder at different Reynolds numbers. Fluid Dyn Res. 2020;52:065501.

    Article  MathSciNet  ADS  Google Scholar 

  21. Nakamura T, Fukami K, Hasegawa K, Nabae Y, Fukagata K. Convolutional neural network and long short-term memory based reduced order surrogate for minimal turbulent channel flow. Phys Fluids. 2021;33:025116.

    Article  CAS  ADS  Google Scholar 

  22. Fukami K, Murata T, Zhang K, Fukagata K. Sparse identification of nonlinear dynamics with low-dimensionalized flow representations. J Fluid Mech. 2021;926:A10.

    Article  MathSciNet  CAS  ADS  Google Scholar 

  23. Lusch B, Kutz JN, Brunton SL. Deep learning for universal linear embeddings of nonlinear dynamics. Nat Commu. 2018;9(1):4950.

    Article  ADS  Google Scholar 

  24. Murata T, Fukami K, Fukagata K. Nonlinear mode decomposition with convolutional neural networks for fluid dynamics. J Fluid Mech. 2020;882:A13.

    Article  MathSciNet  CAS  ADS  Google Scholar 

  25. Xu J, Duraisamy K. Multi-level convolutional autoencoder networks for parametric prediction of spatio-temporal dynamics. Comput Meth Appl Mech Eng. 2020;372:113379.

    Article  MathSciNet  Google Scholar 

  26. Liu Y, Ponce C, Brunton SL, Kutz JN. Multiresolution convolutional autoencoders. J Comput Phys. 2023;474:111801.

    Article  MathSciNet  Google Scholar 

  27. Muehlebach M, Erichson NB, Mahoney M. Physics-informed autoencoders for lyapunov-stable fluid flow prediction. In Machine Learning and the Physical Sciences Workshop, Conference on Neural Information Processing Systems, 2019.

  28. Fukami K, Nakamura T, Fukagata K. Convolutional neural network based hierarchical autoencoder for nonlinear mode decomposition of fluid field data. Phys Fluids. 2020;32:095110.

    Article  CAS  ADS  Google Scholar 

  29. Brenner MP, Eldredge JD, Freund JB. Perspective on machine learning for advancing fluid mechanics. Phys Rev Fluids. 2019;4:100501.

    Article  ADS  Google Scholar 

  30. Erichson NB, Mathelin L, Yao Z, Brunton SL, Mahoney MW, Kutz JN. Shallow neural networks for fluid flow reconstruction with limited sensors. Proc R Soc A. 2020;476(2238):20200097.

    Article  MathSciNet  PubMed  PubMed Central  ADS  Google Scholar 

  31. Fukami K, Fukagata K, Taira K. Assessment of supervised machine learning for fluid flows. Theor Comput Fluid Dyn. 2020;34(4):497–519.

    Article  MathSciNet  Google Scholar 

  32. Everson R, Sirovich L. Karhunen–loeve procedure for gappy data. J Opt Soc Am. 1995;12(8):1657–64.

    Article  ADS  Google Scholar 

  33. Nakamura T, Fukami K, Fukagata K. Identifying key differences between linear stochastic estimation and neural networks for fluid flow regressions. Sci Rep. 2022;12:3726.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  34. Nair NJ, Goza A. Leveraging reduced-order models for state estimation using deep learning. J Fluid Mech. 2020;897:R1.

    Article  MathSciNet  CAS  ADS  Google Scholar 

  35. Fukami K, Maulik R, Ramachandra N, Fukagata K, Taira K. Global field reconstruction from sparse sensors with Voronoi tessellation-assisted deep learning. Nat Mach Intell. 2021;3:945–51.

    Article  Google Scholar 

  36. Fukami K, Fukagata K, Taira K. Super-resolution reconstruction of turbulent flows with machine learning. J Fluid Mech. 2019;870:106–20.

    Article  MathSciNet  CAS  ADS  Google Scholar 

  37. Fukami K, Fukagata K, Taira K. Super-resolution analysis with machine learning for low-resolution flow data. In 11th International Symposium on Turbulence and Shear Flow Phenomena (TSFP11), Southampton, UK, number 208, 2019.

  38. Maulik R, San O. Resolution and energy dissipation characteristics of implicit LES and explicit filtering models for compressible turbulence. Fluids. 2017;2(2):14.

    Article  ADS  Google Scholar 

  39. Liu B, Tang J, Huang H, Lu X-Y. Deep learning methods for super-resolution reconstruction of turbulent flows. Phys Fluids. 2020;32:025105.

    Article  CAS  ADS  Google Scholar 

  40. Kim H, Kim J, Won S, Lee C. Unsupervised deep learning for super-resolution reconstruction of turbulence. J Fluid Mech. 2021;910:A29.

    Article  MathSciNet  CAS  ADS  Google Scholar 

  41. Fukami K, Fukagata K, Taira K. Machine-learning-based spatio-temporal super resolution reconstruction of turbulent flows. J Fluid Mech. 2021;909:A9.

    Article  MathSciNet  CAS  ADS  Google Scholar 

  42. Yousif MZ, Yu L, Lim H-C. High-fidelity reconstruction of turbulent flow from spatially limited data using enhanced super-resolution generative adversarial network. Phys Fluids. 2021;33(12):125119.

    Article  CAS  ADS  Google Scholar 

  43. Yousif MZ, Yu L, Lim H-C. Super-resolution reconstruction of turbulent flow fields at various reynolds numbers based on generative adversarial networks. Phys Fluids. 2022;34(1):015130.

    Article  CAS  ADS  Google Scholar 

  44. Yousif MZ, Zhang M, Yu L, Vinuesa R, Lim H-C. A transformer-based synthetic-inflow generator for spatially-developing turbulent boundary layers. J Fluid Mech. 2023;957:A6.

    Article  MathSciNet  CAS  ADS  Google Scholar 

  45. Deng Z, He C, Liu Y, Kim KC. Super-resolution reconstruction of turbulent velocity fields using a generative adversarial network-based artificial intelligence framework. Phys Fluids. 2019;31:125111.

    Article  ADS  Google Scholar 

  46. Morimoto M, Fukami K, Fukagata K. Experimental velocity data estimation for imperfect particle images using machine learning. Phys Fluids. 2021;33(8):087121.

    Article  CAS  ADS  Google Scholar 

  47. Cai S, Zhou S, Xu C, Gao Q. Dense motion estimation of particle images via a convolutional neural network. Exp Fluids. 2019;60:60–73.

    Article  Google Scholar 

  48. Yousif MZ, Yu L, Hoyas S, Vinuesa R, Lim H-C. A deep-learning approach for reconstructing 3D turbulent flows from 2D observation data. Sci Rep. 2023;13:2529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Huang J, Liu H, Cai W. Online in situ prediction of 3-D flame evolution from its history 2-D projections via deep learning. J Fluid Mech. 2019;875:R2.

    Article  ADS  Google Scholar 

  50. Kench S, Cooper SJ. Generating three-dimensional structures from a two-dimensional slice with generative adversarial network-based dimensionality expansion. Nat Mach Intell. 2021;3:299–305.

    Article  Google Scholar 

  51. Bai H, Alam MdM. Dependence of square cylinder wake on Reynolds number. Phys Fluids. 2018;30:015102.

    Article  ADS  Google Scholar 

  52. Caltagirone JP. Sur l’interaction fluide-milieu poreux: application au calcul des efforts excerses sur un obstacle par un fluide visqueux. C R Acad Sci Paris. 1994;318:571–7.

    Google Scholar 

  53. LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE. 1998;86(11):2278–324.

    Article  Google Scholar 

  54. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.

    Article  CAS  PubMed  ADS  Google Scholar 

  55. Fukami K, Nabae Y, Kawai K, Fukagata K. Synthetic turbulent inflow generator using machine learning. Phys Rev Fluids. 2019;4:064603.

    Article  ADS  Google Scholar 

  56. Champion K, Lusch B, Kutz JN, Brunton SL. Data-driven discovery of coordinates and governing equations. Proc Natl Acad Sci USA. 2019;45(116):22445–51.

    Article  MathSciNet  ADS  Google Scholar 

  57. Kim J, Lee C. Prediction of turbulent heat transfer using convolutional neural networks. J Fluid Mech. 2020;882:A18.

    Article  MathSciNet  CAS  ADS  Google Scholar 

  58. Fukami K, An B, Nohmi M, Obuchi M, Taira K. Machine-learning-based reconstruction of turbulent vortices from sparse pressure sensors in a pump sump. J Fluids Eng. 2022;144(12):121501.

    Article  CAS  Google Scholar 

  59. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proc IEEE. 2016;1:770–8.

    Google Scholar 

  60. Glaws A, King R, Sprague M. Deep learning for in situ data compression of large turbulent flow simulations. Phys Rev Fluids. 2020;5(11):114602.

    Article  ADS  Google Scholar 

  61. Momenifar M, Diao E, Tarokh V, Bragg AD. Dimension reduced turbulent flow data from deep vector quantisers. J Turbul. 2022;23(4–5):232–64.

    Article  ADS  Google Scholar 

  62. Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. Proc. Int. Conf. Mach. Learn., 2010;807–814.

  63. Bergstra J, Yamins D, Cox D. Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures. In International Conference on Machine Learning, 2013;28:115–123. PMLR.

  64. Maulik R, Mohan A, Lusch B, Madireddy S, Balaprakash P, Livescu D. Time-series learning of latent-space dynamics for reduced-order model closure. Phys D. 2020;405:132368.

    Article  MathSciNet  Google Scholar 

  65. Prechelt L. Automatic early stopping using cross validation: quantifying the criteria. Neural Netw. 1998;11(4):761–7.

    Article  PubMed  Google Scholar 

  66. Brunton SL, Kutz JN. Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, pages ISBN, 1108422098, 2019.

  67. Jeong J, Hussain F. On the identification of a vortex. J Fluid Mech. 1995;285:69–94.

    Article  MathSciNet  ADS  Google Scholar 

  68. Pérez JM, Clainche SL, Vega JM. Reconstruction of three-dimensional flow fields from two-dimensional data. J Comput Phys. 2020;407:109239.

    Article  MathSciNet  Google Scholar 

  69. Morimoto M, Fukami K, Zhang K, Fukagata K. Generalization techniques of neural networks for fluid flow estimation. Neural Comput Appl. 2022;34:3647–69.

    Article  Google Scholar 

  70. Nakamura T, Fukagata K. Robust training approach of neural networks for fluid flow state estimations. Int J Heat Fluid Flow. 2022;96:108997.

    Article  Google Scholar 

  71. Keys R. Cubic convolution interpolation for digital image processing. IEEE Trans Acoustics Speech Signal Process. 1981;29(6):1153–60.

    Article  MathSciNet  ADS  Google Scholar 

  72. Robinson AH, Cherry C. Results of a prototype television bandwidth compression scheme. Proc IEEE. 1967;55(3):356–64.

    Article  Google Scholar 

  73. Fukami K, Hasegawa K, Nakamura T, Morimoto M, Fukagata K. Model order reduction with neural networks: application to laminar and turbulent flows. SN Comput Sci. 2021;2:467.

    Article  Google Scholar 

  74. Ogoke F, Meidani K, Hashemi A, Farimani AB. Graph convolutional networks applied to unstructured flow field data. Mach. Learn.: Sci. Technol., 2021;2:045020.

  75. Kashefi A, Rempe D, Guibas LJ. A point-cloud deep learning framework for prediction of fluid flow fields on irregular geometries. Phys Fluids. 2021;33:027104.

    Article  CAS  ADS  Google Scholar 

  76. Gao H, Sun L, Wang J-X. PhyGeoNet: physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs on irregular domain. J Comput Phys. 2021;428:110079.

    Article  MathSciNet  Google Scholar 

  77. Maulik R, Fukami K, Ramachandra N, Fukagata K, Taira K. Probabilistic neural networks for fluid flow surrogate modeling and data recovery. Phys Rev Fluids. 2020;5:104401.

    Article  ADS  Google Scholar 

  78. Morimoto M, Fukami K, Maulik R, Vinuesa R, Fukagata K. Assessments of epistemic uncertainty using gaussian stochastic weight averaging for fluid-flow regression. Phys D. 2022;440:133454.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Japan Society for the Promotion of Science (KAKENHI grant number: 18H03758 and 21H05007). We are also grateful to Professor Shinnosuke Obi, Professor Keita Ando, and Professor Linyu Peng, Professor Takuya Kawata for fruitful discussions. The authors thank Mr. Hikaru Murakami for sharing his DNS code.

Funding

Funded by the Japan Society for the Promotion of Science (KAKENHI grant number: 18H03758 and 21H05007).

Author information

Authors and Affiliations

Authors

Contributions

MM: software, validation, investigation, writing—original draft, visualization. TN: software, investigation, writing—original draft. MM: software, investigation, writing—original draft. KaF: conceptualization, software, writing—review and editing, supervision. KoF: conceptualization, resources, writing—review and editing, supervision, project administration, funding acquisition.

Corresponding author

Correspondence to Koji Fukagata.

Ethics declarations

Conflict of Interest

The authors declare that they have no confict of interest.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuo, M., Fukami, K., Nakamura, T. et al. Reconstructing Three-Dimensional Bluff Body Wake from Sectional Flow Fields with Convolutional Neural Networks. SN COMPUT. SCI. 5, 306 (2024). https://doi.org/10.1007/s42979-024-02602-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-024-02602-0

Keywords

Navigation