[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Detection of abnormalities in heart rate using multiple Fourier transforms

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Fourier transform (FT) is one of the transformation techniques to convert the time-domain signal into the frequency-domain signal. Due to its easy usage, it is applied in many engineering approaches where the data are made of periodic components. Electrocardiography (ECG) is an imaging modality which represents the data of electrophysiological activities of heart. ECG data are gathered from the electrodes that are placed on the specific locations on chest, and electrical activities of heart generally produce periodically shaped time series data. However, this periodicity can be perturbed, or side oscillations can occur due to certain abnormal activities in hearts. From our preliminary studies, we have found that the implementation of the FT multiple times in ECG datasets can be useful in the detection of main and hidden periodicities in autonomous applications. Especially when they are hard to be observed with the first FT. Hereby, this study aims to improve the accuracy of successful detection of such perturbations in ECG data by applying multiple FT and finding the relationship between the side oscillations and also detection of some features of the nth FT in datasets of various cardiac disorders

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Adar NG, Tiryaki, Kozan R (2015) Real time visual serving of a 6-DOF robotic arm using fuzzy-PID controller. Acta Phys Polon A 128(2B):B.348–B.351

    Article  CAS  Google Scholar 

  • Aggarwal CC, Reddy CK (2013) Data clustering: algorithms and applications. CRC Press, Boca Raton

    Book  Google Scholar 

  • Aggarwal CC, Sathe S (2017) Outlier ensembles: An introduction. Springer, Berlin

    Book  Google Scholar 

  • Albrecht P (1983) S-T segment characterization for long-term automated ECG analysis. MIT Department of Electrical Engineering and Computer Science

  • Alp ÖS, Büyükbebeci E, İşcanog A, Özkurt FY, Taylan P, Weber GW (2011) CMARS and GAM and CQP—modern optimization methods applied to international credit default prediction. J Comput Appl Math 235(16):4639–4651

    Article  Google Scholar 

  • Aouf M, Park LA (2012) Approximate document outlier detection using random spectral projection. In: Australasian joint conference on artificial intelligence, Springer, Berlin, Heidelberg

  • Babloyantz A, Destexhe A (1988) Is the normal heart a periodic oscillator? Biol Cybern 58(3):203–211

    Article  CAS  Google Scholar 

  • Baim DS, Colucci WS, Monrad ES, Smith HS, Wright RF, Lanoue A, Gauthier DF, Ransil BJ, Grossman W, Braunwald E (1986) Survival of patients with severe congestive heart failure treated with oral milrinone. J Am Coll Cardiol 7(3):661–670

    Article  CAS  Google Scholar 

  • Bayram U, Acar E (2015) Tolerance analysis with multiple surrogate models. Acta Phys Pol A 128(2):447–449

    Article  CAS  Google Scholar 

  • Behravan V, Glover NE, Farry R, Shoaib M, Chiang PY (2015) Rate-adaptive compressed-sensing and sparsity variance of biomedical signals. In: IEEE International conference in body sensor networks (BSN)

  • Ben-Gal I (2005) Outlier detection in data mining and knowledge discovery handbook: a complete guide for practitioners and researchers. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Boran S, Diren DD (2017) Analysis of out of control signals in multivariate processes with multilayer neural network. Acta Phys Pol A 132(3):1054–1107

    Article  CAS  Google Scholar 

  • Cabras S, Morales J (2007) Extreme value analysis within a parametric outlier detection framework. Appl Stoch Mod Bus Ind 23(2):157–164

    Article  Google Scholar 

  • Campos GO, Zimek A, Sander J, Campello RJ, Micenková B, Schubert E, Assent I, Houle ME (2016) On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study. Data Min Knowl Discov 30(4):891–927

    Article  Google Scholar 

  • Cao L, Yang D, Wang Q, Yu Y, Wang J, Rundensteiner EA (2014) Scalable distance-based outlier detection over high-volume data streams. In: 2014 IEEE 30th international conference data engineering (ICDE)

  • Celik ME, Karagoz I (2015) Modelling of stimulation environment using monophasic rectangle pulse for various stimulation parameters. Acta Phys Pol A 128(2B):B.297–B.299

    Article  CAS  Google Scholar 

  • Çevik A, Weber GW, Eyüboğlu BM, Oğuz KK (2017) Voxel-MARS: a method for early detection of Alzheimer’s disease by classification of structural brain MRI. Anna Oper Res 258(1):31–57

    Article  Google Scholar 

  • Ceylan Y, Usta K, Aydogmus HY, Usta A, Ceylan N, Aras E (2016) An ESR Study on 2,4 diaminotoluene exposed to gamma rays and application of machine learning. Acta Phys Pol A 130(1):184–187

    Article  CAS  Google Scholar 

  • Chauhan S, Vig L (2015) Anomaly detection in ECG time signals via deep long short-term memory networks. In: IEEE International conference on data science and advanced analytics (DSAA)

  • Cömert Z, Kocamaz AF (2017) Comparison of machine learning techniques for fetal heart rate classification. Acta Phys Pol A 132(3):451–454

    Article  Google Scholar 

  • Dekhandji FZ (2017) Signal processing deployment in power quality disturbance detection and classification. Acta Phys Pol A 132(3):451–454

    Article  Google Scholar 

  • Edla DR, Gondlekar V, Gauns V (2016) HK-means: a heuristic approach to initialize and estimate the number of clusters in biological data. Acta Phys Pol A 130(1):78–82

    Article  CAS  Google Scholar 

  • Erkuş EC, Purutçuoğlu V (2018) Two-stage outlier detection algorithm based on Fourier transform: real data applications. In: Proceeding of the international conference on innovative engineering applications (CIEA2018), Sivas

  • Erkuş E, Purutçuoğlu V, Ağraz M (2017) Detection of outliers using Fourier transform. In: Proceeding of the 10th international statistics congress (ISC2017), Ankara

  • Fisher R, Smailagic A, Simmons R, Mizobe K (2016) Using latent variable autoregression to monitor the health of individuals with congestive heart failure. In: Machine learning and applications (ICMLA)

  • Fisher R, Smailagic A, Simmons R, Mizobe K (2016) Using latent variable autoregression to monitor the health of individuals with congestive heart failure. In: 15th IEEE international conference on machine learning and applications (ICMLA)

  • Ghanem RN, Ramanathan C, Jia P, Rudy Y (2003) Heart-surface reconstruction and ECG electrodes localization using fluoroscopy, epipolar geometry and stereovision: application to noninvasive imaging of cardiac electrical activity. IEEE Trans Med Imaging 22(10):1307–1318

    Article  Google Scholar 

  • Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng C-K, Stanle HE (2000) PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23):e215–e220

    Article  CAS  Google Scholar 

  • Goldstein M, Uchida S (2016) A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data. PLoS ONE 11(4):1–31

    Google Scholar 

  • Greenwald SD (1986) Development and analysis of a ventricular fibrillation detector. MIT Department of Electrical Engineering and Computer Science

  • Greenwald SD (1990) Improved detection and classification of arrhythmias in noise-corrupted electrocardiograms using contextual information. Harvard-MIT Division of Health Sciences and Technology

  • Grubbs FE (1969) Procedures for detecting outlying observations in samples. Technometrics 11(1):1–21

    Article  Google Scholar 

  • Ha J, Seok S, Lee J (2015) A precise ranking method for outlier detection. Inf Sci 324:88–107

    Article  Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2009) Unsupervised learning. In: The elements of statistical learning, Springer, New York, pp 485–585

  • Hemalatha CS, Vaidehi V, Lakshmi R (2015) Minimal infrequent pattern based approach for mining outliers in data streams. Expert Syst Appl 42(4):1998–2012

    Article  Google Scholar 

  • Kriegel HP, Kröger P, Zimek A (2010) Outlier detection techniques. Tutorial at KDD, vol 10

  • Moody GB, Mark RG (1983) A new method for detecting atrial fibrillation using R–R intervals. Comput Cardiol 10:227–230

    Google Scholar 

  • Moody GB, Mark RG, Goldberger AL (2001) PhysioNet: a web-based resource for the study of physiologic signals. IEEE Eng Med Biol Mag 20(3):70–75

    Article  CAS  Google Scholar 

  • Nolle FM, Badura FK, Catlett JM, Bowser RW, Sketch MH (1986) CREI-GARD, a new concept in computerized arrhythmia monitoring systems. Comput Cardiol 13:515–518

    Google Scholar 

  • Nyquist H (1928) Certain topics in telegraph transmission theory. Trans Am Inst Electr Eng 47(2):617–644

    Article  Google Scholar 

  • Onak ON, Serinagaoglu-Dogrusoz Y, Weber GW (2018a) Effects of a priori parameter selection in minimum relative entropy method on inverse electrocardiography problem. Inverse Probl Sci Eng 26(6):877–897

    Article  Google Scholar 

  • Onak ÖN, Dogrusoz YS, Weber GW (2018) Evaluation of multivariate adaptive non-parametric reduced-order model for solving the inverse electrocardiography problem: a simulation study. Med Biol Eng Comput 1–27

  • Oppenheim AV, Willsky AS, Nawab SH (1983) Signals and systems. Prentice-Hall International, New Jersey

    Google Scholar 

  • Özmen A, Weber GW (2014) RMARS: robustification of multivariate adaptive regression spline under polyhedral uncertainty. J Comput Appl Math 15(259):914–924

    Article  Google Scholar 

  • Özmen A, Weber GW, Batmaz İ, Kropat E (2011) RCMARS: Robustification of CMARS with different scenarios under polyhedral uncertainty set. Commun Nonlinear Sci Numer Simul 16(12):4780–4787

    Article  Google Scholar 

  • Özmen A, Weber GW, Çavuşoğlu Z, Defterli Ö (2013) The new robust conic GPLM method with an application to finance: prediction of credit default. J Global Optim 56(2):233–249

    Article  Google Scholar 

  • Özmen A, Batmaz İ, Weber GW (2014) Precipitation modeling by polyhedral RCMARS and comparison with MARS and CMARS. Environ Model Assess 19(5):425–435

    Article  Google Scholar 

  • Özmen A, Kropat E, Weber GW (2017) Robust optimization in spline regression models for multi-model regulatory networks under polyhedral uncertainty. Optimization 66(12):2135–2155

    Article  Google Scholar 

  • Rasheed F, Peng P, Alhajj R, Rokne J (2009) Fourier transform based spatial outlier mining. In: International conference on intelligent data engineering and automated learning, Springer, Berlin, Heidelberg

  • Recioui A, Lograda M, Chettah K (2017) Application of data communication to the detection and correction of power system faults. Acta Phys Pol A 132(3):819–821

    Article  CAS  Google Scholar 

  • Schneider R, Bauer A, Barthel P, Schmidt G (2004) libRASCH-a programming framework for transparent access to physiological signals. In: Engineering in Medicine and Biology Society

  • Taylan P, Weber GW, Beck A (2007) New approaches to regression by generalized additive models and continuous optimization for modern applications in finance, science and technology. Optimization 56(5–6):675–698

    Article  Google Scholar 

  • Taylan P, Weber GW, Özkurt FY (2010) A new approach to multivariate adaptive regression splines by using Tikhonov regularization and continuous optimization. TOP 18(2):377–395

    Article  Google Scholar 

  • Thakor NV, Webster JG, Tompkins WJ (1984) Estimation of QRS complex power spectra for design of a QRS filter. IEEE Trans Biomed Eng 11(1):702–706

    Article  Google Scholar 

  • Tietjen GL, Moore RH (1972) Some Grubbs-type statistics for the detection of several outliers. Technometrics 14(3):583–597

    Article  Google Scholar 

  • Weber GW, Özöğür-Akyüz S, Kropat E (2009) A review on data mining and continuous optimization applications in computational biology and medicine. Birth Defects Res Part C Embryo Today Rev 87(2):165–181

    Article  CAS  Google Scholar 

  • Weber GW, Batmaz İ, Köksal G, Taylan P, Yerlikaya-Özkurt F (2012a) CMARS: a new contribution to nonparametric regression with multivariate adaptive regression splines supported by continuous optimization. Inverse Probl Sci Eng 20(3):371–400

    Article  Google Scholar 

  • Weber GW, Çavuşoğlu Z, Özmen A (2012b) Predicting default probabilities in emerging markets by new conic generalized partial linear models and their optimization. Optimization 61(4):443–457

    Article  Google Scholar 

  • Yerlikaya-Özkurt F, Batmaz İ, Weber GW (2014) A review and new contribution on conic multivariate adaptive regression splines (CMARS): a powerful tool for predictive data mining. Model Dyn Optim Bioecon I 73:695–722

    Google Scholar 

  • Yüksel AS, Cankaya SF, Üncü İS (2017) Design of a machine learning based predictive analytics system for spam problem. Acta Phys Pol A 132(3):500–504

    Article  Google Scholar 

  • Zhang Y, Meratnia N, Havinga P (2010) Outlier detection techniques for wireless sensor networks: A survey. IEEE Commun Surv Tutor 12(2):159–170

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the METU research grant (No: BAP-01-09-2017-002) for their support. The authors also thank the anonymous referees and the editor for their comments that improve the quality of the paper significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Purutçuoğlu.

Additional information

Editorial responsibility: M. Abbaspour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erkuş, E.C., Purutçuoğlu, V. & Purutçuoğlu, E. Detection of abnormalities in heart rate using multiple Fourier transforms. Int. J. Environ. Sci. Technol. 16, 5237–5242 (2019). https://doi.org/10.1007/s13762-019-02252-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-019-02252-3

Keywords