[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Mammogram classification using dynamic time warping

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper presents a new approach for breast cancer classification using time series analysis. In particular, the region of interest (ROI) in mammogram images is classified as normal or abnormal using dynamic time warping (DTW) as a similarity measure. According to the analogous case in time series analysis, the DTW subsumes Euclidean distance (ED) as a specific case with increased robustness due to DTW flexibility to address local horizontal/vertical deformations. This method is especially attractive for biomedical image analysis and is applied to mammogram classification for the first time in this paper. The current study concludes that varying the size of the ROI images and the restriction on the search criteria for the warping path do not affect the performance because the method produces good classification results with reduced computational complexity. The method is tested on the IRMA and MIAS dataset using the k-nearest neighbour classifier for different k values, which produces an area under curve (AUC) value of 0.9713 for one of the best scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Agrawal P, Vatsa M, Singh R (2014) Saliency based mass detection from screening mammograms. Signal Process 99:29–47

    Article  Google Scholar 

  2. Bailador G, Sanchez-Avila C, Guerra-Casanova J, de Santos Sierra A (2011) Analysis of pattern recognition techniques for in-air signature biometrics. Pattern Recogn 44(10–11):2468–2478. doi:10.1016/j.patcog.2011.04.010

    Article  Google Scholar 

  3. Berndt DJ, Clifford J (1994) Using dynamic time warping to find patterns in time series, vol 16. KDD workshop, Seattle, pp 359–370

    Google Scholar 

  4. Bhanu B, Zhou X (2004) Face recognition from face profile using dynamic time warping. In: Pattern recognition. ICPR 2004. Proceedings of the 17th International Conference on. IEEE, pp 499–502

  5. Bodiroza S, Doisy G, Hafner V (2013) Position-invariant, real-time gesture recognition based on dynamic time warping. In: Human–Robot Interaction (HRI), 2013 8th ACM/IEEE International Conference on. IEEE, pp 87–88

  6. Brodersen J, Siersma VD (2013) Long-term psychosocial consequences of false-positive screening mammography. Ann Fam Med 11(2):106–115. doi:10.1370/afm.1466

    Article  Google Scholar 

  7. Celebi S, Aydin AS, Temiz TT, Arici T (2013) Gesture recognition using skeleton data with weighted dynamic time warping. In: Computer vision theory and applications, Visapp

  8. Chen Y-L, Wu S-Y, Wang Y-C (2011) Discovering multi-label temporal patterns in sequence databases. Inf Sci 181(3):398–418. doi:10.1016/j.ins.2010.09.024

    Article  Google Scholar 

  9. Dietrich C, Palm G, Riede K, Schwenker F (2004) Classification of bioacoustic time series based on the combination of global and local decisions. Pattern Recogn 37(12):2293–2305

    Article  Google Scholar 

  10. Ding H, Trajcevski G, Scheuermann P, Wang X, Keogh E (2008) Querying and mining of time series data: experimental comparison of representations and distance measures. Proc VLDB Endow 1(2):1542–1552

    Article  Google Scholar 

  11. Duarte Y, Nascimento M, Oliveira D. (2014) Classification of mammographic lesion based in Completed Local Binary Pattern and using multiresolution representation. In: Journal of Physics: Conference Series. vol 1. IOP Publishing, p 012127

  12. Faundez-Zanuy M (2007) On-line signature recognition based on VQ-DTW. Pattern Recogn 40(3):981–992. doi:10.1016/j.patcog.2006.06.007

    Article  MATH  Google Scholar 

  13. Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27(8):861–874

    Article  MathSciNet  Google Scholar 

  14. Forestier G, Lalys F, Riffaud L, Trelhu B, Jannin P (2012) Classification of surgical processes using dynamic time warping. J Biomed Inform 45(2):255–264. doi:10.1016/j.jbi.2011.11.002

    Article  Google Scholar 

  15. Gardezi SJS, Faye I (2015) Fusion of completed local binary pattern features with Curvelet features for mammogram classification. Appl Math 9(6):3037–3048

    MathSciNet  Google Scholar 

  16. Gardezi SJS, Faye I, Eltoukhy MM (2014) Analysis of mammogram images based on texture features of curvelet sub-bands. In: Fifth International Conference on Graphic and Image Processing. Int Soc Optics Photonics, pp 906924-906924-906926

  17. Hajian-Tilaki K (2013) Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian J Intern Med 4(2):627

    Google Scholar 

  18. Harrison HB, Saenz-Agudelo P, Planes S, Jones GP, Berumen ML (2013) On minimizing assignment errors and the trade-off between false positives and negatives in parentage analysis. Mol Ecol 22(23):5738–5742. doi:10.1111/mec.12527

    Article  Google Scholar 

  19. International Agency for Cancer Research (IARC) (2013) Latest world cancer statistics: global cancer burden rises to 14.1 million new cases in 2012: marked increase in breast cancers must be addressed. World Health Organisation (WHO), Lyon

    Google Scholar 

  20. Itakura F (1975) Minimum prediction residual principle applied to speech recognition. IEEE Trans Acoust Speech Signal Process 23(1):67–72

    Article  Google Scholar 

  21. Keogh E, Ratanamahatana CA (2005) Exact indexing of dynamic time warping. Knowl Inf Syst 7(3):358–386. doi:10.1007/s10115-004-0154-9

    Article  Google Scholar 

  22. Kumar R, Indrayan A (2011) Receiver operating characteristic (ROC) curve for medical researchers. Indian Pediatr 48(4):277–287

    Article  Google Scholar 

  23. Lee AJT, Chen Y-A, Ip W-C (2009) Mining frequent trajectory patterns in spatial–temporal databases. Inf Sci 179(13):2218–2231. doi:10.1016/j.ins.2009.02.016

    Article  MATH  Google Scholar 

  24. Legrand B, Chang CS, Ong SH, Neo S-Y, Palanisamy N (2008) Chromosome classification using dynamic time warping. Pattern Recogn Lett 29(3):215–222. doi:10.1016/j.patrec.2007.09.017

    Article  Google Scholar 

  25. Lemire D (2009) Faster retrieval with a two-pass dynamic-time-warping lower bound. Pattern Recogn 42(9):2169–2180

    Article  MATH  Google Scholar 

  26. Liao TW (2005) Clustering of time series data—a survey. Pattern Recogn 38(11):1857–1874

    Article  MATH  Google Scholar 

  27. Martens R, Claesen L (1996) On-line signature verification by dynamic time-warping. In: Pattern recognition, Proceedings of the 13th International Conference on. IEEE, pp 38–42

  28. Michaelson J, Satija S, Moore R, Weber G, Halpern E, Garland A, Kopans DB, Hughes K (2003) Estimates of the sizes at which breast cancers become detectable on mammographic and clinical grounds. J Women’s Imaging 5:3–10

    Article  Google Scholar 

  29. Mugavin ME (2008) Multidimensional scaling: a brief overview. Nurs Res 57(1):64–68. doi:10.1097/1001.NNR.0000280659.0000288760.0000280657c

    Article  Google Scholar 

  30. Niennattrakul V, Ratanamahatana CA (2009) Learning DTW global constraint for time series classification. arXiv preprint arXiv:09030041

  31. Oliveira JE, Gueld MO, Araújo AdA, Ott B, Deserno TM (2008) Toward a standard reference database for computer-aided mammography. In: Medical imaging. International Society for Optics and Photonics, pp 69151Y-69151Y-69159

  32. Oliveira JEE, Gueld MO, de A. Araújo A, Ott B, Deserno TM (2008) Toward a standard reference database for computer-aided mammography. pp 69151Y-69151Y-69159

  33. Oliver A, Lladó X, Freixenet J, Martí J (2007) False positive reduction in mammographic mass detection using local binary patterns. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2007. Springer, pp 286–293

  34. Petitjean F, Ketterlin A, Gançarski P (2011) A global averaging method for dynamic time warping, with applications to clustering. Pattern Recogn 44(3):678–693

    Article  MATH  Google Scholar 

  35. Pratiwi M, Harefa J, Nanda S (2015) Mammograms classification using gray-level co-occurrence matrix and radial basis function neural network. Procedia Comput Sci 59:83–91

    Article  Google Scholar 

  36. Ratanamahatana CA, Keogh E (2005) Three myths about dynamic time warping data mining. In. Proc of the 5th SIAM Int. Conf. on Data Mining, SDM

  37. Sakoe H, Chiba S (1978) Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans Acoust Speech Signal Process 26(1):43–49

    Article  MATH  Google Scholar 

  38. Salvador S, Chan P (2004) FastDTW: Toward accurate dynamic time warping in linear time and space. In: KDD workshop on mining temporal and sequential data. Citeseer

  39. Salz T, Richman AR, Brewer NT (2010) Meta-analyses of the effect of false-positive mammograms on generic and specific psychosocial outcomes. Psycho-Oncology 19(10):1026–1034

    Article  Google Scholar 

  40. Skutkova H, Vitek M, Babula P, Kizek R, Provaznik I (2013) Classification of genomic signals using dynamic time warping. BMC Bioinforma 14(10):1–7

    Article  Google Scholar 

  41. Suckling JSA, Betal D, Cerneaz N, Dance DR, Kok S-L, Parker J, Ricketts I, Savage J, Stamatakis E, Taylor P (1994) The mammographic image analysis society digital mammogram database exerpta medica. Int Congr Ser 1069:375–378

    Google Scholar 

  42. Tai S-C, Chen Z-S, Tsai W-T (2014) An automatic mass detection system in mammograms based on complex texture features. IEEE J Biomed Health Inform 18(2):618–627

    Article  Google Scholar 

  43. Toennies KD (2012) Guide to medical image analysis: methods and algorithms. Springer, New York

    Book  Google Scholar 

  44. Vaidehi K, Subashini T (2015) Automatic characterization of benign and malignant masses in mammography. Procedia Comput Sci 46:1762–1769

    Article  Google Scholar 

  45. Wang Y, Shi H, Ma S (2011) A new approach to the detection of lesions in mammography using fuzzy clustering. J Int Med Res 39(6):2256–2263

    Article  Google Scholar 

  46. Wasserstein RL, Lazar NA (2016) The ASA’s statement on p-values: context, process, and purpose. Am Stat. doi:10.1080/00031305.2016.1154108

    Article  MathSciNet  Google Scholar 

  47. Wickelmaier F (2003) An introduction to MDS: sound quality research unit. Aalborg University, Aalborg

    Google Scholar 

  48. Xi X, Keogh E, Shelton C, Wei L, Ratanamahatana CA (2006) Fast time series classification using numerosity reduction. In: Proceedings of the 23rd international conference on Machine learning. ACM, pp 1033–1040

  49. Zhang Y-D, Wang S-H, Liu G, Yang J (2016) Computer-aided diagnosis of abnormal breasts in mammogram images by weighted-type fractional Fourier transform. Adv Mech Eng 8(2). doi:10.1177/1687814016634243

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the URIF grant 0153AA-B52.

Author’s contributions

SJS, IF and JMSB proposed the idea; participated in implementation and coordinated in optimization of study parameters using matlab. SJSG and JMSB also performed the literature survey and worked on database construction. NK and MH provided valuable suggestions in design and implementation of study and assisted in drafting of the manuscript. All authors have read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahima Faye.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gardezi, S.J.S., Faye, I., Sanchez Bornot, J.M. et al. Mammogram classification using dynamic time warping. Multimed Tools Appl 77, 3941–3962 (2018). https://doi.org/10.1007/s11042-016-4328-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-4328-8

Keywords

Navigation