[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

STEM: a suffix tree-based method for web data records extraction

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

To automatically extract data records from Web pages, the data record extraction algorithm is required to be robust and efficient. However, most of existing algorithms are not robust enough to cope with rich information or noisy data. In this paper, we propose a novel suffix tree-based extraction method (STEM) for this challenging task. First, we extract a sequence of identifiers from the tag paths of Web pages. Then, a suffix tree is built on top of this sequence and four refining filters are proposed to screen out data regions that might not contain data records. To evaluate model performance, we define an evaluation metric called pattern similarity and perform rigorous experiments on five real data sets. The promising experimental results have demonstrated that the proposed STEM is superior to the state-of-the-art algorithms like MDR, TPC and CTVS with respect to precision, recall and pattern similarity. Moreover, the time complexity of STEM is linear to the total number of HTML tags contained in Web pages, which indicates the potential applicability of STEM in a wide range of Web-scale data record extraction applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. Without further explanation, the DOM tree nodes mentioned in this paper are element nodes.

  2. JTidy: http://sourceforge.net/projects/jtidy/?source=directory.

  3. http://i.cs.hku.hk/~yxfang/public_data.rar.

  4. For TB2 and TB3, the number of websites are not specified in [28], and so we put “–” there.

References

  1. Laender A, Riberro-Neto B, Silva A, Teixira J (2002) A brief survey of web data extraction tools. In: SIGMOD record, vol 31(2). ACM, New York, pp 84–93

  2. Chang C-H, Kayed M, Girgis MR, Shaala KF (2006) A survey of web information extraction systems. IEEE Trans Knowl Data Eng. 18(10):1411–1428

    Article  Google Scholar 

  3. Sleiman H, Corchuelo R et al (2013) A survey on region extractors from web documents. IEEE Trans Knowl Data Eng 25(9):1960–1981

    Article  Google Scholar 

  4. Ferrara E, De Meo P, Fiumara G, Baumgartner R (2014) Web data extraction, applications and techniques: a survey. Knowl Based Syst 70:301–323

    Article  Google Scholar 

  5. Miao G, Tatemura J, Hsiung W-P, Sawires A, Moser L (2009) Extracting data records from the web using tag path clustering. In: Proceedings of the 18th international conference on World Wide Web (WWW). ACM, New York, pp 981–990

  6. Su W, Wang J, Wang J, Lochovsky FH, Liu Y (2012) Combing tag and value similarity for data extraction and alignment. IEEE Trans Knowl Data Eng 24(7):1186–1200

    Article  Google Scholar 

  7. Liu B, Grossman R, Zhai Y (2003) Mining data records in web pages. In: Proceedings of the ninth ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, pp 601–606

  8. Baumgartner R, Gottlob G, Herzog M (2009) Scalable web data extraction for online market intelligence. Proc VLDB Endow 2(2):1512–1523

    Article  Google Scholar 

  9. Liu L, Pu C, Han W (2000) Xwrap: an xml-enabled wrapper construction system for web information sources. In: Proceedings of the IEEE 16th international conference on data engineering, pp 611–621

  10. Gulhane P, Madaan A, Mehta R, et al (2011) Web-scale information extraction with vertex. In: ICDE, pp 209–220

  11. Etzioni O, Cafarella M, Downey D, Kok S, Popescu A-M, Shaked T, Soderland S, Weld DS, Yates A (2004) Web-scale information extraction in knowitall (preliminary results). In: Proceedings of the 13th international conference on World Wide Web. ACM, New York, pp 100–110

  12. Gupta S, Kaiser G, Neistadt D, Grimm P (2003) Dom-based content extraction of html documents. In: Proceedings of the 12th international conference on World Wide Web, pp 207–214

  13. Gupta S, Kaiser GE, Grimm P, Chiang MF, Starren J (2005) Automating content extraction of html documents. In: Proceedings of the 14th international conference on World Wide Web, vol 8, no. 2, pp 179–224, 6

  14. Zheng S, Song R, Wen J-R, Giles CL (2009) Efficient record-level wrapper induction. In: Proceedings of the 18th international conference on information and knowledge management (CIKM). ACM, New York, pp 47–56

  15. Dalvi N, Kumar R, Soliman M (2011) Automatic wrappers for large scale web extraction. Proc VLDB Endow 4(4):219–230

    Article  Google Scholar 

  16. Buttler D, Liu L, Pu C (2001) A fully automated object extraction system for the world wide web. In: Proceedings of IEEE 21st international conference on distributed computing systems, pp 361–370

  17. Chang C, Lui S (2001) Iepad: information extraction based on pattern discovery. In: Proceedings of the 10th international conference on World Wide Web. ACM, New York, pp 681–688

  18. Kayed M (2012) Peer matrix alignment: a new algorithm. In: Advances in knowledge discovery and data mining, pp 268–279

  19. Zhai Y, Liu B (2005) Web data extraction based on partial tree alignment. In: Proceedings of the 14th international conference on World Wide Web (WWW). ACM, New York, pp 76–85

  20. Liu B, Zhai Y (2005) Net-a system for extracting web data from flat and nested data records. In: WISE, vol 2005. Springer, pp 487–495

  21. Arasu A, Garcia-Molina H (2003) Extracting structured data from web pages. In: Proceedings of ACM SIGMOD international conference on management of data, pp 337–348

  22. Zhai Y, Liu B (2006) Structured data extraction from the web based on partial tree alignment. IEEE Trans Knowl Data Eng 18(12):1614–1628

    Article  Google Scholar 

  23. Zhao H, Meng W, Yu C (2006) Automatic extraction of dynamic record sections from search engine result pages. In: Proceedings of the 32nd international conference on very large data bases, pp 989–1000

  24. Bing L, Lam W, Gu Y (2011) Towards a unified solution: Data record region detection and segmentation. In: Proceedings of the 20th ACM international conference on information and knowledge management, pp 1265–1274

  25. Gatterbauer W, Bohunsky P, Herzog M, Krüpl B, Pollak B (2007) Towards domain-independent information extraction from web tables. In: Proceedings of the 16th international conference on World Wide Web. ACM, New York, pp 71–80

  26. Cai D, Yu S, Wen J-R, Ma W-Y (2003) Extracting content structure for web pages based on visual representation. In: Web technologies and applications, pp 406–417

  27. Simon K, Lausen G (2005) Viper: augmenting automatic information extraction with visual perceptions. In: Proceedings of the 14th ACM international conference on information and knowledge management, pp 381–388

  28. Bing L, Lam W, Wong T-L (2013) Robust detection of semi-structured web records using a dom structure-knowledge-driven model. ACM Trans Web 7(4):21:1–21:32

    Article  Google Scholar 

  29. Zhao H, Meng W, Wu Z, Raghavan V, Yu C (2005) Fully automatic wrapper generation for search engines. In: Proceedings of the 14th international conference on World Wide Web (WWW). ACM, New York, pp 66–75

  30. Liu W, Meng X, Meng W (2010) Vide: a vision-based approach for deep web data extraction. IEEE Trans Knowl Data Eng 22(3):447–460

    Article  Google Scholar 

  31. Fumarola F, Weninger T, Barber R, Malerba D, Han J (2011) Hylien: a hybrid approach to general list extraction on the web. In: Proceedings of the 20th international conference on World Wide Web (WWW), pp 35–36

  32. Furche T, Gottlob G, Grasso G, Guo X, Orsi G, Schallhart C, Wang C (2014) Diadem: thousands of websites to a single database. Proc VLDB Endow 7(14):1845–1856

    Article  Google Scholar 

  33. Crescenzi V, Merialdo P, Qiu D (2013) Alfred: crowd assisted data extraction. In: Proceedings of the 22th international conference on World Wide Web (WWW), pp 297–300

  34. Kondreddi SK, Triantafillou P, Weikum G (2014) Combining information extraction and human computing for crowdsourced knowledge acquisition. In: IEEE 30th international conference on data engineering, pp 988–999

  35. Pasternack J, Roth D (2009) Extracting article text from the web with maximum subsequence segmentation. In: Proceedings of the 18th international conference on World Wide Web (WWW), pp 971–980

  36. Weninger T, Hsu WH (2008) Text extraction from the web via text-to-tag ratio. In: 19th international workshop on database and expert systems application, pp 23–28

  37. Weninger T, Hsu WH, Han J (2010) Cetr: content extraction via tag ratios. In: WWW, pp 971–980

  38. Sun F, Song D, Liao L (2011) Dom based content extraction via text density. In: SIGIR, pp 245–254

  39. Wu S, Liu J, Fan J (2015) Automatic web content extraction by combination of learning and grouping. In: Proceedings of the 24th international conference on World Wide Web (WWW), pp 1264–1274

  40. Song D, Sun F, Liao L (2015) A hybrid approach for content extraction with text density and visual importance of dom nodes. Knowl Inf Syst 42(1):75–96

    Article  Google Scholar 

  41. Chiu D-Y, Wu Y-H, Chen A (2009) Efficient frequent sequence mining by a dynamic strategy switching algorithm. VLDB J 18(1):303–327

    Article  Google Scholar 

  42. Loh W-K, Ahn H (2011) A storage-efficient suffix tree construction algorithm for human genome sequences. IEICE Trans 94–D(12):2557–2560

    Article  Google Scholar 

  43. Pei J, Han J, Mortazavi-Asl B, Pinto H, Chen Q, Dayal U, Hsu M-C (2001) Prefixspan: mining sequential patterns efficiently by prefix-projected pattern growth. In: ICCN, pp 215–224

  44. Pei J, Han J, Mortazavi-Asl B, Wang J, Pinto H, Chen Q, Dayal U, Hsu M-C (2004) Mining sequential patterns by pattern-growth: the prefixspan approach. IEEE Trans Knowl Data Eng, vol 16

  45. Xie X, Fang Y, Zhang Z, Li L (2012) Extracting data records from web using suffix tree. In: Proceedings of the 18th SIGKDD workshop on mining data semantics. ACM

  46. Maaß M (1999) Suffix trees and their applications. Ferienakademie

  47. Grossi R, Italiano GF (1993) Suffix trees and their applications in string algorithms. In: Proceedings of the 1st south American workshop on string processing, pp 57–76

  48. Zamir O, Etzioni O (1998) Web document clustering: a feasibility demonstration. In: Proceedings of the 21st annual international ACM SIGIR conference on research and development in information retrieval, pp 46–54

  49. Chim H, Deng X (2007) A new suffix tree similarity measure for document clustering. In Proceedings of the 16th international conference on World Wide Web. ACM, pp 121–130

  50. Fang Y, Zhang H, Ye Y, Li X (2014) Detecting hot topics from twitter: a multiview approach. J Inf Sci 40(5):578–593

    Article  Google Scholar 

  51. Ukkonen E (1995) On-line construction of suffix trees. Algorithmica 14(3):249–260

    Article  MathSciNet  MATH  Google Scholar 

  52. Farach M (1997) Optimal suffix tree construction with large alphabets. In: FOCS, pp 137–143

  53. Greenberg RI (2003) Bounds on the number of longest common subsequences. CoRR, vol. cs.DM/0301030. [Online]. Available: http://arxiv.org/abs/cs.DM/0301030

  54. Knuth DE, Morris JH, Pratt VR (1977) Fast pattern matching in strings. SAIM J Comput 6(2):323–350

  55. Yamada Y, Craswell N,  Nakatoh T, Hirokawa S (2004) Testbed for information extraction from deep web. In: Proceedings of the 13th international conference on World Wide Web (WWW). ACM, New York, pp 346–347

  56. Navarro G (2001) A guided tour to approximate string matching. ACM Comput Surv 33(1):31–88

    Article  Google Scholar 

Download references

Acknowledgements

Reynold Cheng and Yixiang Fang were supported by the Research Grants Council of Hong Kong (RGC Projects HKU 17229116 and 17205115) and the University of Hong Kong (Projects 102009508 and 104004129). Xiaoqin Xie was supported by the China Scholarship Council and the National Natural Science Foundation of China (Nos. 61202090, 61370084, 61272184), the Science and Technology Innovation Talents Special Fund of Harbin under Grant (No. 2015RQQXJ067), the Fundamental Research Funds for the Central Universities under Grant (No. HEUCF10060). Xiaofeng Zhang was partially supported by the National Science Foundation of China under Grant No. 61370213, National Key Technology Support Program of China under Grant No. 2014BAL05B06, and Shenzhen Science and Technology Program under Grant No. JCYJ20160330163900579. We would like to thank the reviewers for their insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Xie, X., Zhang, X. et al. STEM: a suffix tree-based method for web data records extraction. Knowl Inf Syst 55, 305–331 (2018). https://doi.org/10.1007/s10115-017-1062-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-017-1062-0

Keywords

Navigation