[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Z-eigenvalue methods for a global polynomial optimization problem

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

As a global polynomial optimization problem, the best rank-one approximation to higher order tensors has extensive engineering and statistical applications. Different from traditional optimization solution methods, in this paper, we propose some Z-eigenvalue methods for solving this problem. We first propose a direct Z-eigenvalue method for this problem when the dimension is two. In multidimensional case, by a conventional descent optimization method, we may find a local minimizer of this problem. Then, by using orthogonal transformations, we convert the underlying supersymmetric tensor to a pseudo-canonical form, which has the same E-eigenvalues and some zero entries. Based upon these, we propose a direct orthogonal transformation Z-eigenvalue method for this problem in the case of order three and dimension three. In the case of order three and higher dimension, we propose a heuristic orthogonal transformation Z-eigenvalue method by improving the local minimum with the lower-dimensional Z-eigenvalue methods, and a heuristic cross-hill Z-eigenvalue method by using the two-dimensional Z-eigenvalue method to find more local minimizers. Numerical experiments show that our methods are efficient and promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson B.D., Bose N.K. and Jury E.I. (1975). Output feedback stabilization and related problems-solutions via decision methods. IEEE Trans. Autom. Control AC20: 55–66

    Google Scholar 

  2. Bose N.K. and Kamat P.S. (1974). Algorithm for stability test of multidimensional filters. IEEE Trans. Acoust. Speech Signal Process. ASSP-22: 307–314

    Article  Google Scholar 

  3. Bose N.K. and Modarressi A.R. (1976). General procedure for multivariable polynomial positivity with control applications. IEEE Trans. Autom. Control AC-21: 596–601

    MathSciNet  Google Scholar 

  4. Bose N.K. and Newcomb R.W. (1974). Tellegon’s theorem and multivariable realizability theory. Int. J. Electron. 36: 417–425

    Article  MathSciNet  Google Scholar 

  5. Calamai P.H. and Moré J.J. (1987). Projected gradient methods for linearly constrained problems. Math. Program. 39: 93–116

    Article  MATH  Google Scholar 

  6. Cardoso J.F. (1999). High-order contrasts for independent component analysis. Neural Comput. 11: 157–192

    Article  Google Scholar 

  7. Comon P. (1994). Independent component analysis, a new concept?. Signal Process. 36: 287–314

    Article  MATH  Google Scholar 

  8. De Lathauwer L., De Moor B. and Vandewalle J. (2000). On the best rank-1 and rank-(R 1,R 2,...,R N ) approximation of higher-order tensor. SIAM J. Matrix Anal. Appl. 21: 1324–1342

    Article  MATH  MathSciNet  Google Scholar 

  9. De Lathauwer, L., Comon, P., De Moor, B., Vandewalle, J.: Higher-order power method—application in indepedent component analysis. In: Proceedings of the International Symposium on Nonlinear Theory and its Applications (NOLTA’95), Las Vegas, NV, 1995, pp. 91–96

  10. Fu M. (1998). Comments on ‘A procedure for the positive definiteness of forms of even-order’. IEEE Trans. Autom. Control 43: 1430

    Article  MATH  Google Scholar 

  11. Grigorascu, V.S., Regalia, P.A.: Tensor displacement structures and polyspectral matching. In: Kailath, T., Sayed, A.H., (eds.) Fast Reliable Algorithms for Structured Matrices, Chap. 9. SIAM Publications, Philadeliphia (1999)

  12. Hasan M.A. and Hasan A.A. (1996). A procedure for the positive definiteness of forms of even-order. IEEE Trans. Autom. Control AC-41: 615–617

    Article  MathSciNet  Google Scholar 

  13. Jury E.I. and Mansour M. (1981). Positivity and nonnegativity conditions of a quartic equation and related problems. IEEE Trans. Autom. Control AC26: 444–451

    Article  MathSciNet  Google Scholar 

  14. Kolda T.G. (2001). Orthogonal tensor decomposition. SIAM J. Matrix Anal. Appl. 23: 243–255

    Article  MATH  MathSciNet  Google Scholar 

  15. Kofidis E. and Regalia P.A. (2002). On the best rank-1 approximation of higher-order supersymmetric tensors. SIAM J. Matrix Anal. Appl. 23: 863–884

    Article  MATH  MathSciNet  Google Scholar 

  16. Ku W.H. (1965). Explicit criterion for the positive definiteness of a general quartic form. IEEE Trans. Autom. Control 10: 372–373

    Article  Google Scholar 

  17. Lim, L.-H.: Singular values and eigenvalues of tensors: A variational approach. In: Proceedings of the First IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), December 13–15, 2005, pp. 129–132

  18. Ni G., Qi L., Wang F. and Wang Y. (2007). The degree of the E-characteristic polynomial of an even order tensor. J. Math. Anal. Appl. 329: 1218–1229

    Article  MathSciNet  Google Scholar 

  19. Nikias C.L. and Petropulu A.P. (1993). Higher-Order Spectra Analysis, A Nonlinear Signal Processing Framework. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  20. Qi L. (2005). Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40: 1302–1324

    Article  MATH  Google Scholar 

  21. Qi L. (2006). Rank and eigenvalues of a supersymmetric tensor, a multivariate homogeneous polynomial and an algebraic surface defined by them. J. Symb. Comput. 41: 1309–1327

    Article  MATH  Google Scholar 

  22. Qi L. (2007). Eigenvalues and invariants of tensors. J. Math. Anal. Appl. 325: 1363–1377

    Article  MATH  MathSciNet  Google Scholar 

  23. Regalia P.A. and Mboup M. (2001). Properties of some blind equalization criteria in noisy multi-user environments. IEEE Trans. Signal Process. 49: 3112–3122

    Article  MathSciNet  Google Scholar 

  24. Wang F. and Qi L. (2005). Comments on ‘Explicit criterion for the positive definiteness of a general quartic form’. IEEE Trans. Autom. Control 50: 416–418

    Article  MathSciNet  Google Scholar 

  25. Zhang T. and Golub G.H. (2001). Rank-1 approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 23: 534–550

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqun Qi.

Additional information

This work is supported by the Research Grant Council of Hong Kong and the Natural Science Foundation of China (Grant No. 10771120).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, L., Wang, F. & Wang, Y. Z-eigenvalue methods for a global polynomial optimization problem. Math. Program. 118, 301–316 (2009). https://doi.org/10.1007/s10107-007-0193-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-007-0193-6

Keywords

Mathematics Subject Classification (2000)

Navigation