[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

On Lifting Operators and Regularity of Nonsmooth Newton Methods for Optimal Control Problems of Differential Algebraic Equations

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper focuses on nonsmooth Newton methods of optimal control problems governed by mixed control–state constraints with differential algebraic equations. In contrast to previous results, we analyze lifting operators involved in nonsmooth Newton methods and establish corresponding convergence results. We also give sufficient conditions for regularity of generalized derivatives of systems of nonsmooth operator equations associated with optimal control problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biegler, L.T.: Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes. MOS/SIAM Series on Optimization, vol. 10. SIAM, Philadelphia (2010)

    Book  MATH  Google Scholar 

  2. Dontchev, A.L., Hager, W.W., Malanowski, K.: Error bounds for Euler approximation of a state and control constrained optimal control problem. Numer. Funct. Anal. Optim. 21, 653–682 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dontchev, A.L., Hager, W.W., Veliov, V.M.: Second-order Runge-Kutta approximations in control constrained optimal control. SIAM J. Numer. Anal. 38, 202–226 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hager, W.W.: Runge-Kutta methods in optimal control and the transformed adjoint system. Numer. Math. 87, 247–282 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Leineweber, D.B., Bock, H.G., Schlöder, J.P., Gallitzendörfer, J.V., Schäfer, A., Jansohn, P.: A Boundary Value Problem Approach to the Optimization of Chemical Processes Described by DAE Models. University of Heidelberg, Technical Report, Interdisciplinary Center for Scientific Computing (1997)

  6. Malanowski, K., Büskens, C., Maurer, H.: Convergence of Approximations to Nonlinear Optimal Control Problems, Mathematical Programming with Data Perturbations, Lecture Notes in Pure and Appl. Math., Dekker, New York, vol. 195, pp. 253–284 (1998)

  7. Gerdts, M.: Optimal control of ODEs and DAEs de Gruyter Textbook. Walter de Gruyter & Co., Berlin (2012)

    Book  MATH  Google Scholar 

  8. Büskens, C.: Optimierungsmethoden und Sensitivitätsanalyse für optimale Steuerprozesse mit Steuer- und Zustandsbeschränkungen, PhD thesis, Westfälische Wilhems-Universität Münster (1998)

  9. Grötschel, M., Krumke, S.O., Rambau, J.: Online Optimization of Large Scale Systems. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  10. Ioffe, A.D., Tihomirov, V.M.: Theory of Extremal Problems, Studies in Mathematics and its Applications, 6. North-Holland Publishing Co., Amsterdam, New York (1979)

    MATH  Google Scholar 

  11. Gerdts, M.: Direct shooting method for the numerical solution of higher index DAE optimal control problems. J. Optim. Theory Appl. 117, 267–294 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hartl, R.F., Sethi, S.P., Vickson, G.: A survey of the maximum principles for optimal control problems with state constraints. SIAM Rev. 37, 181–218 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Oberle, H.J., Grimm, W.: Bndsco—A Program for the Numerical Solution of Optimal Control Problems. Institute for Flight Systems Dynamics, DLR, Oberpfaffenhofen, Internal Report 515-89/22 (1989)

  14. Pesch, H.J.: A practical guide to the solution of real-life optimal control problems. Control Cybern. 23, 7–60 (1995)

    MathSciNet  MATH  Google Scholar 

  15. Chen, J., Gerdts, M.: Numerical solution of control-state constrained optimal control problems with an inexact smoothing Newton method. IMA J. Numer. Anal. 31, 1598–1624 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen, J., Gerdts, M.: Smoothing techniques of nonsmooth Newton methods for control-state constrained optimal control problems. SIAM J. Numer. Anal. 50, 1982–2011 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kanzow, C., Pieper, H.: Jacobian smoothing methods for nonlinear complementarity problems. SIAM J. Optim. 9, 342–372 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Qi, L., Sun, D.: Smoothing functions and a smoothing Newton method for complementarity and variational inequality problems. J. Optim. Theory Appl. 113, 121–147 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen, B., Harker, P.T.: A non-interior-point continuation method for linear complementarity problem. SIAM J. Matrix Anal. Appl. 14, 1168–1190 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen, J., Qi, L.: Globally and superlinearly convergent inexact Newton–Krylov algorithms for solving nonsmooth equations. Numer. Linear Algebra Appl. 17, 155–174 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen, X., Nashed, Z., Qi, L.: Smoothing methods and semismooth methods for nondifferentiable operator equations. SIAM J. Numer. Anal. 38, 1200–1216 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen, X., Qi, L., Sun, D.: Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities. Math. Comput. 67, 519–540 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, New York (2003)

    MATH  Google Scholar 

  24. Qi, L., Sun, D., Zhou, G.: A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities. Math. Program. 87, 1–35 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ulbrich, M.: Semismooth newton methods for operator equations in function spaces. SIAM J. Optim. 13, 805–841 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ulbrich, M.: Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces, vol. 11. SIAM, Philadelphia (2011)

    Book  MATH  Google Scholar 

  27. Tröltzsch, F.: Regular Lagrange multipliers for control problems with mixed pointwise control state constraints. SIAM J. Optim. 15, 616–634 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Alt, W., Malanowski, K.: The Lagrange–Newton method for nonlinear optimal control problems. Comput. Optim. Appl. 2, 77–100 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Malanowski, K.: On normality of Lagrange multipliers for state constrained optimal control problems. Optimization 52, 75–91 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zeidan, V.: The Riccati equation for optimal control problems with mixed state-control constraints: necessity and sufficiency. SIAM J. Control Optim. 32, 1297–1321 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  31. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  32. Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13, 865–888 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ito, K., Kunisch, K.: Lagrange Multiplier Approach to Variational Problems and Applications, Advances in Design and Control, 15. SIAM, Philadelphia (2008)

    MATH  Google Scholar 

  34. Gerdts, M.: Global convergence of a nonsmooth Newton method for control-state constrained optimal control problems, SIAM J. Optim. 19, 326–350 (2008), Erratum 21, 615–616 (2011)

  35. Gerdts, M., Kunkel, M.: A globally convergent semi-smooth Newton method for control-state constrained DAE optimal control problems. Comput. Optim. Appl. 48, 601–633 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Malanowski, K., Maurer, H.: Sensitivity analysis for parametric control problems with control-state constraints. Comput. Optim. Appl. 5, 253–283 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  37. Maurer, H., Pickenhain, S.: Second-order sufficient conditions for control problems with mixed control-state constraints. J. Optim. Theory Appl. 86, 649–667 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

JC is financially supported by DOE (Grant No. DE-FG02-02ER15344). HR is financially supported by NSF (Grant No. CHE-1763198) and DOE (Grant No. DE-FG02-02ER15344).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhai Chen.

Additional information

Communicated by Boris Vexler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Rabitz, H. On Lifting Operators and Regularity of Nonsmooth Newton Methods for Optimal Control Problems of Differential Algebraic Equations. J Optim Theory Appl 180, 518–535 (2019). https://doi.org/10.1007/s10957-018-1364-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-018-1364-8

Keywords

Mathematics Subject Classification

Navigation