[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Human position and head direction tracking in fisheye camera using randomized ferns and fisheye histograms of oriented gradients

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper proposes a system for tracking human position and head direction using fisheye camera mounted to the ceiling. This is believed to be the first system to estimate head direction from ceiling-mounted fisheye camera. Fisheye histograms of oriented gradients descriptor is developed as a substitute to the histograms of oriented gradients descriptor which has been widely used for human detection in perspective camera. Human body and head are detected by the proposed descriptor and tracked to extract head area for direction estimation. Direction estimation using randomized ferns is adapted to work with fisheye images by using the proposed descriptor, guided by the direction of movement. With experiments on available dataset and new dataset with ground truth, the direction can be estimated with average error below \(40^{\circ }\), with head position error half of the head size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Srisamosorn, V., Kuwahara, N., Yamashita, A., Ogata, T., Ota, J.: Human-tracking system using quadrotors and multiple environmental cameras for face-tracking application. Int. J. Adv. Robot. Syst. 14(5), 1–18 (2017)

    Article  Google Scholar 

  2. Yoshimoto, H., Date, N., Yonemoto, S.: Vision-based real-time motion capture system using multiple cameras. In: Proceedings of IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, MFI2003, pp. 247–251 (2003)

  3. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1, pp. 886–893 (2005)

  4. Dollár, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: an evaluation of the state of the art. IEEE Trans. Pattern Anal. Mach. Intell. 34(4), 743–761 (2012)

    Article  Google Scholar 

  5. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2010)

    Article  Google Scholar 

  6. Kittipanya-ngam, P., Ong, S.G., Eng, H.L.: Estimation of human body orientation using histogram of oriented gradients. In: 12th IAPR Conference on Machine Vision Applications, pp. 459–462 (2011)

  7. Liu, B., Wu, H., Su, W., Sun, J.: Sector-ring HOG for rotation-invariant human detection. Signal Process. Image Commun. 54, 1–10 (2017)

    Article  Google Scholar 

  8. Meinel, L., Findeisen, M., Heß, M., Apitzsch, A., Hirtz, G.: Automated real-time surveillance for ambient assisted living using an omnidirectional camera. In: 2014 IEEE International Conference on Consumer Electronics (ICCE), pp. 396–399 (2014)

  9. Zhou, Z., Chen, X., Chung, Y.C., He, Z., Han, T.X., Keller, J.M.: Activity analysis, summarization, and visualization for indoor human activity monitoring. IEEE Trans. Circuits Syst. Video Technol. 18(11), 1489–1498 (2008)

    Article  Google Scholar 

  10. Demiröz, B.E., Arı, I., Eroğlu, O., Salah, A.A., Akarun, L.: Feature-based tracking on a multi-omnidirectional camera dataset. In: 2012 5th International Symposium on Communications, Control and Signal Processing, pp. 1–5 (2012)

  11. Saito, M., Kitaguchi, K., Kimura, G., Hashimoto, M.: Human detection from fish-eye image by bayesian combination of probabilistic appearance models. In: 2010 IEEE International Conference on Systems, Man, and Cybernetics, pp. 243–248 (2010)

  12. Chiang, A.T., Wang, Y.: Human detection in fish-eye images using HOG-based detectors over rotated windows. In: 2014 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), pp. 1–6 (2014)

  13. Tang, Y., Li, Y., Bai, T., Zhou, X., Li, Z.: Human tracking in thermal catadioptric omnidirectional vision. In: 2011 IEEE International Conference on Information and Automation, pp. 97–102 (2011)

  14. Tasson, D., Montagnini, A., Marzotto, R., Farenzena, M., Cristani, M.: FPGA-based pedestrian detection under strong distortions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 65–70 (2015)

  15. Cinaroglu, I., Bastanlar, Y.: A direct approach for human detection with catadioptric omnidirectional cameras. In: 2014 22nd Signal Processing and Communications Applications Conference (SIU), pp. 2275–2279 (2014)

  16. Krams, O., Kiryati, N.: People detection in top-view fisheye imaging. In: 2017 14th IEEE International Conference on Advanced Video and Signal based Surveillance (AVSS), pp. 1–6 (2017)

  17. Delibasis, K.K., Plagianakos, V.P., Maglogiannis, I.: Pose recognition in indoor environments using a fisheye camera and a parametric human model. In: 2014 International Conference on Computer Vision Theory and Applications (VISAPP), vol. 2, pp. 470–477 (2014)

  18. Jalal, A., Kim, Y.H., Kim, Y.J., Kamal, S., Kim, D.: Robust human activity recognition from depth video using spatiotemporal multi-fused features. Pattern Recognit. 61, 295–308 (2017)

    Article  Google Scholar 

  19. Jalal, A., Sarif, N., Kim, J.T., Kim, T.S.: Human activity recognition via recognized body parts of human depth silhouettes for residents monitoring services at smart home. Indoor Built Environ. 22(1), 271–279 (2013)

    Article  Google Scholar 

  20. Nguyen, V.T., Nguyen, T.B., Chung, S.T.: ConvNets and AGMM based real-time human detection under fisheye camera for embedded surveillance. In: 2016 International Conference on Information and Communication Technology Convergence (ICTC), pp. 840–845 (2016)

  21. Bensebaa, A., Larabi, S.: Direction estimation of moving pedestrian groups for intelligent vehicles. Vis. Comput. 34(6), 1109–1118 (2018)

    Article  Google Scholar 

  22. Benfold, B., Reid, I.: Guiding visual surveillance by tracking human attention. In: Proceedings of the 20th British Machine Vision Conference (2009)

  23. Özuysal, M., Calonder, M., Lepetit, V., Fua, P.: Fast keypoint recognition using random ferns. IEEE Trans. Pattern Anal. Mach. Intell. 32(3), 448–461 (2010)

    Article  Google Scholar 

  24. Benfold, B.: The acquisition of coarse gaze estimates in visual surveillance. Ph.D. thesis, Oxford University (2011)

  25. Chen, C., Odobez, J.M.: We are not contortionists: Coupled adaptive learning for head and body orientation estimation in surveillance video. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1544–1551 (2012)

  26. Rehder, E., Kloeden, H., Stiller, C.: Head detection and orientation estimation for pedestrian safety. In: 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 2292–2297 (2014)

  27. Yan, Y., Ricci, E., Subramanian, R., Liu, G., Lanz, O., Sebe, N.: A multi-task learning framework for head pose estimation under target motion. IEEE Trans. Pattern Anal. Mach. Intell. 38(6), 1070–1083 (2016)

    Article  Google Scholar 

  28. Benfold, B., Reid, I.: Unsupervised learning of a scene-specific coarse gaze estimator. In: 2011 International Conference on Computer Vision, pp. 2344–2351 (2011)

  29. Chamveha, I., Sugano, Y., Sugimura, D., Siriteerakul, T., Okabe, T., Sato, Y., Sugimoto, A.: Head direction estimation from low resolution images with scene adaptation. Comput. Vis. Image Underst. 117(10), 1502–1511 (2013)

    Article  Google Scholar 

  30. Hulens, D., Van Beeck, K., Goedemé, T.: Fast and accurate face orientation measurement in low-resolution images on embedded hardware. In: Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2016), vol. 4, pp. 538–544. Scitepress (2016)

  31. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1, pp. I-511–I-518 (2001)

  32. Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35–45 (1960)

    Article  MathSciNet  Google Scholar 

  33. Zivkovic, Z.: Improved adaptive gaussian mixture model for background subtraction. In: Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, vol. 2, pp. 28–31 (2004)

  34. Grupo de Tratamiento de Imágenes, Universidad Politécnica de Madrid (GTI-UPM): PIROPO Database. https://sites.google.com/site/piropodatabase. Last accessed 30 Mar 2018

  35. Dalal, N.: INRIA Person Dataset. http://pascal.inrialpes.fr/data/human/. Last accessed 22 Aug 2018

  36. Prisacariu, V., Reid, I.: fastHOG—a real-time GPU implementation of HOG. Technical report 2310/09, Department of Engineering Science, Oxford University (2009)

  37. Everingham, M., Eslami, S.M.A., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes challenge: a retrospective. Int. J. Comput. Vis. 111(1), 98–136 (2015)

    Article  Google Scholar 

  38. Motion Analysis Corporation: Motion Analysis Corporation, the Motion Capture Leader. http://www.motionanalysis.com. Last accessed 21 July 2018

  39. Kannala, J., Brandt, S.S.: A generic camera model and calibration method for conventional, wide-angle, and fish-eye lenses. IEEE Trans. Pattern Anal. Mach. Intell. 28(8), 1335–1340 (2006)

    Article  Google Scholar 

  40. Sobral, A.: BGSLibrary: An OpenCV C++ background subtraction library. In: IX Workshop de Visão Computacional (WVC’2013). Rio de Janeiro, Brazil (2013). https://github.com/andrewssobral/bgslibrary. Accessed 15 Mar 2018

  41. Lepetit, V., Özuysal, M., Pilet, J.: Ferns: Planar Object Detection Demo | CVLAB. https://cvlab.epfl.ch/software/ferns. Last accessed 21 Aug 2018

Download references

Funding

This work was partially supported by JSPS KAKENHI (Grant Number 15H01698).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veerachart Srisamosorn.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 14768 KB)

Supplementary material 2 (mp4 41017 KB)

Supplementary material 3 (mp4 40135 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srisamosorn, V., Kuwahara, N., Yamashita, A. et al. Human position and head direction tracking in fisheye camera using randomized ferns and fisheye histograms of oriented gradients. Vis Comput 36, 1443–1456 (2020). https://doi.org/10.1007/s00371-019-01749-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-019-01749-9

Keywords

Navigation