[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Physiologically based pharmacokinetic models for the transport of trichloroethylene in adipose tissue

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper we present three physiologically based pharmacokinetic (PBPK) models for the systemic transport of trichloroethylene (TCE), with a focus on the adipose, or fat tissue. TCE is a widespread environmental contaminant, and has been shown to produce toxic effects in both animals and humans. A key characteristic of TCE is its tendency to accumulate in fat tissue, which has a major impact on the overall systemic disposition of TCE.

Here we use PBPK models to predict the dynamics of TCE in the various tissues and organs, including the adipose tissue. The first model utilizes the standard ‘perfusion-limited’ compartmental model for the fat tissue, while the second model uses a ‘diffusion-limited’ model to describe the transport through the adipose tissue. Both of these ODE models are based on ‘well-mixed’ and rapid equilibrium assumptions, and do not take into account the specific and largely heterogeneous physiology of adipose tissue.

The third model we discuss is a PBPK hybrid model with an axial-dispersion type model for the adipose tissue. This PDE-based model is designed to capture key physiological heterogeneities of fat tissue, including widely varying fat cell sizes, lipid distribution, and blood flow properties. Model simulations demonstrate that this model may be well-suited to predict the experimental behavior of TCE in adipose tissue using parameter estimation techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbas, R. and J. Fisher (1997). A physiologically based pharmacokinetic model for trichloroethylene and its metabolites, chloral hydrate, trichloroacetate, dichloroacetate, trichloroethanol, and trichloroethanol glucuronide in B6C3F1 mice. Toxicol. Appl. Pharmacol. 147, 15–30.

    Article  Google Scholar 

  • Ahmad, N., W. Harsas, R. S. Marolt, M. Morton and J. K. Pollack (1988). Total DDT and dieldrin content of human adipose-tissue. Bull. Environ. Contam. Toxicol. 41, 802–808.

    Article  Google Scholar 

  • Banks, H. T. (2001). Remarks on uncertainty of assessment and management in modeling and computation. Tech. Rep. CRSC-TR98-39, Center for Research in Scientific Computation, North Carolina State University, November 1998; Math. Comput. Modelling 33, 39–47.

    MATH  Google Scholar 

  • Banks, H. T. and K. L. Bihari (2001). Modeling and estimating uncertainty in parameter estimation. Tech. Rep. CRSC-TR99-40, Center for Research in Scientific Computation, North Carolina State University, December 1999; Inverse Probl. 17, 1–17.

    MathSciNet  Google Scholar 

  • Banks, H. T., C. J. Musante and J. K. Raye (2001). Predictions for a distributed parameter model describing the hepatic processing of 2,3,7,8-TCDD. Tech. Rep. CRSC-TR98-38, Center for Research in Scientific Computation, North Carolina State University, November 1998; Math. Comput. Modelling 33, 49–64.

    MATH  Google Scholar 

  • Banks, H. T., C. J. Musante and H. T. Tran (1998). A dispersion model for the hepatic uptake and elimination of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Math. Comput. Modelling 28, 9–29.

    Article  Google Scholar 

  • Barton, H. A. and H. J. Clewell III (2000). Evaluating noncancer effects of trichloroethylene: dosimetry, mode of action, and risk assessment. Environ. Health Perspect. 108(Suppl. 2), 323–334.

    Google Scholar 

  • Bergman, K. (1983). Application and results of whole-body autoradiography in distribution studies of organic solvents. Crit. Rev. Toxicol. 12, 59–118.

    Google Scholar 

  • Blanchette-Mackie, E. J. and R. O. Scow (1982). Continuity of intracellular channels with extracellular space in adipose tissue and liver: demonstrated with tannic acid and lanthanum. Anat. Rec. 203, 205–219.

    Article  Google Scholar 

  • Blanchette-Mackie, E. J. and R. O. Scow (1981a). Lipolysis and lamellar structures in white adipose tissue of young rats: lipid movement in membranes. J. Ultrastructure Res. 77, 295–318.

    Article  Google Scholar 

  • Blanchette-Mackie, E. J. and R. O. Scow (1981b). Membrane continuities within cells and intercellular contacts in white adipose tissue of young rats. J. Ultrastructure Res. 77, 277–294.

    Article  Google Scholar 

  • Brauch, H., G. Weirich, M. A. Hornauer, S. Storkel, T. Wohl and T. Bruning (1999). Trichloroethylene exposure and specific somatic mutations in patients with renal cell carcinoma. J. Nat. Cancer Inst. 91, 854–861.

    Article  Google Scholar 

  • Bruckner, J. V., B. D. Davis and J. N. Blancato (1989). Metabolism, toxicity, and carcinogenicity of trichloroethylene. Crit. Rev. Toxicol. 20, 31–50.

    Google Scholar 

  • Bull, R. J. (2000). Mode of action of liver tumor induction by trichloroethylene and its metabolites, trichloroacetate and dichloroacetate. Environ. Health Perspect. 108(Suppl.2), 241–260.

    Google Scholar 

  • Bush, M. L., C. B. Frederick, J. S. Kimbell and J. S. Ultman (1998). A CFD-PBPK hybrid model for simulating gas and vapor uptake in the rat nose. Toxicol. Appl. Pharmacol. 150, 133–145.

    Article  Google Scholar 

  • Byard, J. L. (1987). The toxicological significance of 2,3,7,8-tetrachlorodibenzo-p-dioxin and related compounds in adipose tissue. J. Toxicol. Environ. Health 22, 381–403.

    Article  Google Scholar 

  • Courant, R. and D. Hilbert (1989). Methods of Mathematical Physics, Vol. I, New York: John Wiley & Sons.

    Google Scholar 

  • Crandall, D. and M. DiGirolamo (1990). Hemodynamic and metabolic correlates in adipose tissue: Pathophysiologic considerations. FASEB 4, 141–147.

    Google Scholar 

  • Crandall, D., G. J. Hausman and J. G. Kral (1997). A review of the microcirculation of adipose tissue: anatomic, metabolic, and angiogenic perspectives. Microcirculation 4, 211–232.

    Article  Google Scholar 

  • Davidson, I. W. F. and R. P. Beliles (1991). Consideration of the target organ toxicity of trichloroethylene in terms of metabolite toxicity and pharmacokinetics. Drug Metab. Rev. 23, 493–599.

    Google Scholar 

  • Di Francesco, C. and M. H. Bickel (1985). Uptake in vitro of lipophilic model compounds into adipose tissue preparations and lipids. Biochem. Pharmacol. 34, 3683–3688.

    Article  Google Scholar 

  • Evans, M. V., W. K. Boyes, P. J. Bushnell, J. H. Raymer and J. E. Simmons (1999). A Physiologically Based Pharmacokinetic Model for Trichloroethylene (TCE) in Long-Evans Rats. Preprint.

  • Fisher, J. W., M. L. Gargas, B. C. Allen and M. E. Andersen (1991). Physiologically based pharmacokinetic modeling with trichloroethylene and its metabolite, trichloroacetic acid, in the rat and mouse. Toxicol. Appl. Pharmacol. 109, 183–195.

    Article  Google Scholar 

  • Fisher, J. W., D. Mahle and R. Abbas (1998). A human physiologically based pharmacokinetic model for trichloroethylene and its metabolites, trichloroacetic acid and free trichloroethanol. Toxicol. Appl. Pharmacol. 152, 339–359.

    Article  Google Scholar 

  • Fournier, R. L. (1999). Basic Transport Phenomena in Biomedical Engineering, Philadelphia: Taylor & Francis.

    Google Scholar 

  • Fung, Y. C. (1981). Biomechanics: Mechanical Properties of Living Tissues, New York: Springer-Verlag.

    Google Scholar 

  • Goeptar, A. R., J. N. M. Commandeur, B. van Ommen, P. J. van Bladeren and N. P. E. Vermeulen (1995). Metabolism and kinetics of trichloroethylene in relation to toxicity and carcinogenicity. Relevance of the mercapturic acid pathway. Chem. Res. Toxicol. 8, 3–21.

    Article  Google Scholar 

  • Green, T. (2000). Pulmonary toxicity and carcinogenicity of trichloroethylene: species differences and modes of action. Environ. Health Perspect. 108(Suppl. 2), 261–264.

    Google Scholar 

  • Greenberg, M. S., G. A. Burton and J. W. Fisher (1999). Physiologically based pharmacokinetic modeling of inhaled trichloroethylene and its oxidative metabolites in B6C3F1 mice. Toxicol. Appl. Pharmacol. 154, 264–278.

    Article  Google Scholar 

  • Guyton, A. C. (1991). Textbook of Medical Physiology, Philadelphia: W.B. Saunders Company.

    Google Scholar 

  • Hausman, G. J. (1985). The comparative anatomy of adipose tissue, in New Perspectives in Adipose Tissue: Structure, Function and Development, A. Cryer and R. L. R. Van (Eds), London, U.K.: Butterworths.

    Google Scholar 

  • Lash, L. H., J. W. Fisher, J. C. Lipscomb and J. C. Parker (2000a). Metabolism of trichloroethylene. Environ. Health Perspect. 108(Suppl. 2), 177–200.

    Google Scholar 

  • Lash, L. H., J. C. Parker and C. S. Scott (2000b). Modes of action of trichloroethylene for kidney tumorigenesis. Environ. Health Perspect. 108(Suppl. 2), 225–240.

    Google Scholar 

  • Levenspiel, O. (1999). Chemical Reaction Engineering, 3rd edn, New York: John Wiley and Sons.

    Google Scholar 

  • Lordo, R. A., K. T. Dinh and J. G. Schwemberger (1996). Semivolatile organic compounds in adipose tissue: estimated averages for the US population and selected subpopulations. Am. J. Public Health 86, 1253–1259.

    Article  Google Scholar 

  • MacQueen, H. A., V. Waights and C. M. Pond (1999). Vascularization in adipose depots surrounding immune-stimulated lymph nodes. J. Anat. 194, 33–38.

    Article  Google Scholar 

  • Medinsky, M. A. and C. D. Klaassen (1996). Toxicokinetics, in Casarett and Doull’s Toxicology: The Basic Science of Poisons, 5th edn, C. D. Klaassen (Ed.), New York: McGraw-Hill, Health Professions Division.

    Google Scholar 

  • Minder, S., W. A. Daniel, J. Clausen and M. H. Bickel (1994). Adipose-tissue storage of drugs as a function of binding competition—in vitro studies with distribution dialysis. J. Pharm. Pharmacol. 46, 313–315.

    Google Scholar 

  • Pastino, G. M., W. Y. Yap and M. Carroquino (2000). Human variability and susceptibility to trichloroethylene. Environ. Health Perspect. 108(Suppl. 2), 201–215.

    Google Scholar 

  • Roberts, M. S. and M. Rowland (1986). A dispersion model of hepatic elimination: 1. Formulation of the model and bolus considerations. J. Pharmacokinet. Biopharm. 14, 227–260.

    Article  Google Scholar 

  • Rosell, S. and E. Belfrage (1979). Blood circulation in adipose tissue. Physiol. Rev. 59, 1078–1104.

    Google Scholar 

  • Roy, A., C. P. Weisel, P. J. Lioy and P. G. Georgopoulos (1996). A distributed parameter physiologically-based pharmacokinetic model for dermal and inhalation exposure to volatile organic compounds. Risk Anal. 16, 147–160.

    Article  Google Scholar 

  • Saillenfait, A. M., I. Langonne and J. P. Sabate (1995). Developmental toxicity of trichloroethylene, tetrachloroethylene and four of their metabolites in rat whole embryo culture. Arch. Toxicol. 70, 71–82.

    Google Scholar 

  • Scott, C. S. and V. J. Cogliano (2000). Trichloroethylene health risks-state of the science. Environ. Health Perspect. 108(Suppl. 2), 159–160.

    Google Scholar 

  • Scow, R. O., E. J. Blanchette-Mackie and L. C. Smith (1980). Transport of lipid across capillary endothelium. Federation Proc. 39, 2610–2617.

    Google Scholar 

  • Simon, T. M., F. Reitich, M. R. Jolly, K. Ito and H. T. Banks (2001). The effective magnetic properties of magnetorheological fluids. Math. Comput. Modelling 33, 273–284.

    Article  MATH  Google Scholar 

  • Simon, T. M., F. Reitich, M. R. Jolly, K. Ito and H. T. Banks (1999). Estimation of the effective permeability in magnetorheological fluids. Tech. Rep. CRSC-TR98-35, Center for Research in Scientific Computation, North Carolina State University; J. Intell. Mater. Syst. Struct. 10, 872–879.

    Google Scholar 

  • Slavin, B. G. (1985). The morphology of adipose tissue, in New Perspectives in Adipose Tissue: Structure, Function and Development, A. Cryer and R. L. R. Van (Eds), London, U.K.: Butterworths.

    Google Scholar 

  • Stenner, R. D., J. L. Merdink, J. W. Fisher and R. J. Bull (1998). Physiologically-based pharmacokinetic models for trichloroethylene considering enterohepatic recirculation of major metabolites. Risk Anal. 18, 261–269.

    Article  Google Scholar 

  • Telford, I. R. and C. F. Bridgman (1995). Introduction to Functional Histology, New York: HarperCollins College Publishers.

    Google Scholar 

  • United Nations Environment Programme, International Labour Organisation and World Health Organization (1985). Trichloroethylene, Geneva: World Health Organization.

    Google Scholar 

  • West, D. B., W. A. Prinz, A. A. Francendese and M. R. C. Greenwood (1987). Adipocyte blood flow is decreased in obese Zucker rats. Am. J. Physiol. 253, R228–R233.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albanese, R.A., Banks, H.T., Evans, M.V. et al. Physiologically based pharmacokinetic models for the transport of trichloroethylene in adipose tissue. Bull. Math. Biol. 64, 97–131 (2002). https://doi.org/10.1006/bulm.2001.0268

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.2001.0268

Keywords

Navigation