@inproceedings{hou-etal-2023-contrastive,
title = "Contrastive Bootstrapping for Label Refinement",
author = "Hou, Shudi and
Xia, Yu and
Chen, Muhao and
Li, Sujian",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-short.84/",
doi = "10.18653/v1/2023.acl-short.84",
pages = "976--985",
abstract = "Traditional text classification typically categorizes texts into pre-defined coarse-grained classes, from which the produced models cannot handle the real-world scenario where finer categories emerge periodically for accurate services. In this work, we investigate the setting where fine-grained classification is done only using the annotation of coarse-grained categories and the coarse-to-fine mapping. We propose a lightweight contrastive clustering-based bootstrapping method to iteratively refine the labels of passages. During clustering, it pulls away negative passage-prototype pairs under the guidance of the mapping from both global and local perspectives. Experiments on NYT and 20News show that our method outperforms the state-of-the-art methods by a large margin."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hou-etal-2023-contrastive">
<titleInfo>
<title>Contrastive Bootstrapping for Label Refinement</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shudi</namePart>
<namePart type="family">Hou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yu</namePart>
<namePart type="family">Xia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Muhao</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sujian</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoaki</namePart>
<namePart type="family">Okazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Traditional text classification typically categorizes texts into pre-defined coarse-grained classes, from which the produced models cannot handle the real-world scenario where finer categories emerge periodically for accurate services. In this work, we investigate the setting where fine-grained classification is done only using the annotation of coarse-grained categories and the coarse-to-fine mapping. We propose a lightweight contrastive clustering-based bootstrapping method to iteratively refine the labels of passages. During clustering, it pulls away negative passage-prototype pairs under the guidance of the mapping from both global and local perspectives. Experiments on NYT and 20News show that our method outperforms the state-of-the-art methods by a large margin.</abstract>
<identifier type="citekey">hou-etal-2023-contrastive</identifier>
<identifier type="doi">10.18653/v1/2023.acl-short.84</identifier>
<location>
<url>https://aclanthology.org/2023.acl-short.84/</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>976</start>
<end>985</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Contrastive Bootstrapping for Label Refinement
%A Hou, Shudi
%A Xia, Yu
%A Chen, Muhao
%A Li, Sujian
%Y Rogers, Anna
%Y Boyd-Graber, Jordan
%Y Okazaki, Naoaki
%S Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F hou-etal-2023-contrastive
%X Traditional text classification typically categorizes texts into pre-defined coarse-grained classes, from which the produced models cannot handle the real-world scenario where finer categories emerge periodically for accurate services. In this work, we investigate the setting where fine-grained classification is done only using the annotation of coarse-grained categories and the coarse-to-fine mapping. We propose a lightweight contrastive clustering-based bootstrapping method to iteratively refine the labels of passages. During clustering, it pulls away negative passage-prototype pairs under the guidance of the mapping from both global and local perspectives. Experiments on NYT and 20News show that our method outperforms the state-of-the-art methods by a large margin.
%R 10.18653/v1/2023.acl-short.84
%U https://aclanthology.org/2023.acl-short.84/
%U https://doi.org/10.18653/v1/2023.acl-short.84
%P 976-985
Markdown (Informal)
[Contrastive Bootstrapping for Label Refinement](https://aclanthology.org/2023.acl-short.84/) (Hou et al., ACL 2023)
ACL
- Shudi Hou, Yu Xia, Muhao Chen, and Sujian Li. 2023. Contrastive Bootstrapping for Label Refinement. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 976–985, Toronto, Canada. Association for Computational Linguistics.