@inproceedings{zhang-etal-2023-dual,
title = "Dual Class Knowledge Propagation Network for Multi-label Few-shot Intent Detection",
author = "Zhang, Feng and
Chen, Wei and
Ding, Fei and
Wang, Tengjiao",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-long.480",
doi = "10.18653/v1/2023.acl-long.480",
pages = "8605--8618",
abstract = "Multi-label intent detection aims to assign multiple labels to utterances and attracts increasing attention as a practical task in task-oriented dialogue systems. As dialogue domains change rapidly and new intents emerge fast, the lack of annotated data motivates multi-label few-shot intent detection. However, previous studies are confused by the identical representation of the utterance with multiple labels and overlook the intrinsic intra-class and inter-class interactions. To address these two limitations, we propose a novel dual class knowledge propagation network in this paper. In order to learn well-separated representations for utterances with multiple intents, we first introduce a label-semantic augmentation module incorporating class name information. For better consideration of the inherent intra-class and inter-class relations, an instance-level and a class-level graph neural network are constructed, which not only propagate label information but also propagate feature structure. And we use a simple yet effective method to predict the intent count of each utterance. Extensive experimental results on two multi-label intent datasets have demonstrated that our proposed method outperforms strong baselines by a large margin.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2023-dual">
<titleInfo>
<title>Dual Class Knowledge Propagation Network for Multi-label Few-shot Intent Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Feng</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fei</namePart>
<namePart type="family">Ding</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tengjiao</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoaki</namePart>
<namePart type="family">Okazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Multi-label intent detection aims to assign multiple labels to utterances and attracts increasing attention as a practical task in task-oriented dialogue systems. As dialogue domains change rapidly and new intents emerge fast, the lack of annotated data motivates multi-label few-shot intent detection. However, previous studies are confused by the identical representation of the utterance with multiple labels and overlook the intrinsic intra-class and inter-class interactions. To address these two limitations, we propose a novel dual class knowledge propagation network in this paper. In order to learn well-separated representations for utterances with multiple intents, we first introduce a label-semantic augmentation module incorporating class name information. For better consideration of the inherent intra-class and inter-class relations, an instance-level and a class-level graph neural network are constructed, which not only propagate label information but also propagate feature structure. And we use a simple yet effective method to predict the intent count of each utterance. Extensive experimental results on two multi-label intent datasets have demonstrated that our proposed method outperforms strong baselines by a large margin.</abstract>
<identifier type="citekey">zhang-etal-2023-dual</identifier>
<identifier type="doi">10.18653/v1/2023.acl-long.480</identifier>
<location>
<url>https://aclanthology.org/2023.acl-long.480</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>8605</start>
<end>8618</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Dual Class Knowledge Propagation Network for Multi-label Few-shot Intent Detection
%A Zhang, Feng
%A Chen, Wei
%A Ding, Fei
%A Wang, Tengjiao
%Y Rogers, Anna
%Y Boyd-Graber, Jordan
%Y Okazaki, Naoaki
%S Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F zhang-etal-2023-dual
%X Multi-label intent detection aims to assign multiple labels to utterances and attracts increasing attention as a practical task in task-oriented dialogue systems. As dialogue domains change rapidly and new intents emerge fast, the lack of annotated data motivates multi-label few-shot intent detection. However, previous studies are confused by the identical representation of the utterance with multiple labels and overlook the intrinsic intra-class and inter-class interactions. To address these two limitations, we propose a novel dual class knowledge propagation network in this paper. In order to learn well-separated representations for utterances with multiple intents, we first introduce a label-semantic augmentation module incorporating class name information. For better consideration of the inherent intra-class and inter-class relations, an instance-level and a class-level graph neural network are constructed, which not only propagate label information but also propagate feature structure. And we use a simple yet effective method to predict the intent count of each utterance. Extensive experimental results on two multi-label intent datasets have demonstrated that our proposed method outperforms strong baselines by a large margin.
%R 10.18653/v1/2023.acl-long.480
%U https://aclanthology.org/2023.acl-long.480
%U https://doi.org/10.18653/v1/2023.acl-long.480
%P 8605-8618
Markdown (Informal)
[Dual Class Knowledge Propagation Network for Multi-label Few-shot Intent Detection](https://aclanthology.org/2023.acl-long.480) (Zhang et al., ACL 2023)
ACL