@inproceedings{ye-etal-2022-metaassist,
title = "{M}eta{ASSIST}: Robust Dialogue State Tracking with Meta Learning",
author = "Ye, Fanghua and
Wang, Xi and
Huang, Jie and
Li, Shenghui and
Stern, Samuel and
Yilmaz, Emine",
editor = "Goldberg, Yoav and
Kozareva, Zornitsa and
Zhang, Yue",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-main.76/",
doi = "10.18653/v1/2022.emnlp-main.76",
pages = "1157--1169",
abstract = "Existing dialogue datasets contain lots of noise in their state annotations. Such noise can hurt model training and ultimately lead to poor generalization performance. A general framework named ASSIST has recently been proposed to train robust dialogue state tracking (DST) models. It introduces an auxiliary model to generate pseudo labels for the noisy training set. These pseudo labels are combined with vanilla labels by a common fixed weighting parameter to train the primary DST model. Notwithstanding the improvements of ASSIST on DST, tuning the weighting parameter is challenging. Moreover, a single parameter shared by all slots and all instances may be suboptimal. To overcome these limitations, we propose a meta learning-based framework MetaASSIST to adaptively learn the weighting parameter. Specifically, we propose three schemes with varying degrees of flexibility, ranging from slot-wise to both slot-wise and instance-wise, to convert the weighting parameter into learnable functions. These functions are trained in a meta-learning manner by taking the validation set as meta data. Experimental results demonstrate that all three schemes can achieve competitive performance. Most impressively, we achieve a state-of-the-art joint goal accuracy of 80.10{\%} on MultiWOZ 2.4."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ye-etal-2022-metaassist">
<titleInfo>
<title>MetaASSIST: Robust Dialogue State Tracking with Meta Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Fanghua</namePart>
<namePart type="family">Ye</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xi</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jie</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shenghui</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Samuel</namePart>
<namePart type="family">Stern</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emine</namePart>
<namePart type="family">Yilmaz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zornitsa</namePart>
<namePart type="family">Kozareva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Existing dialogue datasets contain lots of noise in their state annotations. Such noise can hurt model training and ultimately lead to poor generalization performance. A general framework named ASSIST has recently been proposed to train robust dialogue state tracking (DST) models. It introduces an auxiliary model to generate pseudo labels for the noisy training set. These pseudo labels are combined with vanilla labels by a common fixed weighting parameter to train the primary DST model. Notwithstanding the improvements of ASSIST on DST, tuning the weighting parameter is challenging. Moreover, a single parameter shared by all slots and all instances may be suboptimal. To overcome these limitations, we propose a meta learning-based framework MetaASSIST to adaptively learn the weighting parameter. Specifically, we propose three schemes with varying degrees of flexibility, ranging from slot-wise to both slot-wise and instance-wise, to convert the weighting parameter into learnable functions. These functions are trained in a meta-learning manner by taking the validation set as meta data. Experimental results demonstrate that all three schemes can achieve competitive performance. Most impressively, we achieve a state-of-the-art joint goal accuracy of 80.10% on MultiWOZ 2.4.</abstract>
<identifier type="citekey">ye-etal-2022-metaassist</identifier>
<identifier type="doi">10.18653/v1/2022.emnlp-main.76</identifier>
<location>
<url>https://aclanthology.org/2022.emnlp-main.76/</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>1157</start>
<end>1169</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T MetaASSIST: Robust Dialogue State Tracking with Meta Learning
%A Ye, Fanghua
%A Wang, Xi
%A Huang, Jie
%A Li, Shenghui
%A Stern, Samuel
%A Yilmaz, Emine
%Y Goldberg, Yoav
%Y Kozareva, Zornitsa
%Y Zhang, Yue
%S Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates
%F ye-etal-2022-metaassist
%X Existing dialogue datasets contain lots of noise in their state annotations. Such noise can hurt model training and ultimately lead to poor generalization performance. A general framework named ASSIST has recently been proposed to train robust dialogue state tracking (DST) models. It introduces an auxiliary model to generate pseudo labels for the noisy training set. These pseudo labels are combined with vanilla labels by a common fixed weighting parameter to train the primary DST model. Notwithstanding the improvements of ASSIST on DST, tuning the weighting parameter is challenging. Moreover, a single parameter shared by all slots and all instances may be suboptimal. To overcome these limitations, we propose a meta learning-based framework MetaASSIST to adaptively learn the weighting parameter. Specifically, we propose three schemes with varying degrees of flexibility, ranging from slot-wise to both slot-wise and instance-wise, to convert the weighting parameter into learnable functions. These functions are trained in a meta-learning manner by taking the validation set as meta data. Experimental results demonstrate that all three schemes can achieve competitive performance. Most impressively, we achieve a state-of-the-art joint goal accuracy of 80.10% on MultiWOZ 2.4.
%R 10.18653/v1/2022.emnlp-main.76
%U https://aclanthology.org/2022.emnlp-main.76/
%U https://doi.org/10.18653/v1/2022.emnlp-main.76
%P 1157-1169
Markdown (Informal)
[MetaASSIST: Robust Dialogue State Tracking with Meta Learning](https://aclanthology.org/2022.emnlp-main.76/) (Ye et al., EMNLP 2022)
ACL
- Fanghua Ye, Xi Wang, Jie Huang, Shenghui Li, Samuel Stern, and Emine Yilmaz. 2022. MetaASSIST: Robust Dialogue State Tracking with Meta Learning. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 1157–1169, Abu Dhabi, United Arab Emirates. Association for Computational Linguistics.