@inproceedings{das-etal-2021-emotion,
title = "Emotion Classification in a Resource Constrained Language Using Transformer-based Approach",
author = "Das, Avishek and
Sharif, Omar and
Hoque, Mohammed Moshiul and
Sarker, Iqbal H.",
editor = "Durmus, Esin and
Gupta, Vivek and
Liu, Nelson and
Peng, Nanyun and
Su, Yu",
booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop",
month = jun,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.naacl-srw.19/",
doi = "10.18653/v1/2021.naacl-srw.19",
pages = "150--158",
abstract = "Although research on emotion classification has significantly progressed in high-resource languages, it is still infancy for resource-constrained languages like Bengali. However, unavailability of necessary language processing tools and deficiency of benchmark corpora makes the emotion classification task in Bengali more challenging and complicated. This work proposes a transformer-based technique to classify the Bengali text into one of the six basic emotions: anger, fear, disgust, sadness, joy, and surprise. A Bengali emotion corpus consists of 6243 texts is developed for the classification task. Experimentation carried out using various machine learning (LR, RF, MNB, SVM), deep neural networks (CNN, BiLSTM, CNN+BiLSTM) and transformer (Bangla-BERT, m-BERT, XLM-R) based approaches. Experimental outcomes indicate that XLM-R outdoes all other techniques by achieving the highest weighted f{\_}1-score of 69.73{\%} on the test data."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="das-etal-2021-emotion">
<titleInfo>
<title>Emotion Classification in a Resource Constrained Language Using Transformer-based Approach</title>
</titleInfo>
<name type="personal">
<namePart type="given">Avishek</namePart>
<namePart type="family">Das</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Omar</namePart>
<namePart type="family">Sharif</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammed</namePart>
<namePart type="given">Moshiul</namePart>
<namePart type="family">Hoque</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Iqbal</namePart>
<namePart type="given">H</namePart>
<namePart type="family">Sarker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Esin</namePart>
<namePart type="family">Durmus</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Gupta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nelson</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nanyun</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yu</namePart>
<namePart type="family">Su</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Although research on emotion classification has significantly progressed in high-resource languages, it is still infancy for resource-constrained languages like Bengali. However, unavailability of necessary language processing tools and deficiency of benchmark corpora makes the emotion classification task in Bengali more challenging and complicated. This work proposes a transformer-based technique to classify the Bengali text into one of the six basic emotions: anger, fear, disgust, sadness, joy, and surprise. A Bengali emotion corpus consists of 6243 texts is developed for the classification task. Experimentation carried out using various machine learning (LR, RF, MNB, SVM), deep neural networks (CNN, BiLSTM, CNN+BiLSTM) and transformer (Bangla-BERT, m-BERT, XLM-R) based approaches. Experimental outcomes indicate that XLM-R outdoes all other techniques by achieving the highest weighted f_1-score of 69.73% on the test data.</abstract>
<identifier type="citekey">das-etal-2021-emotion</identifier>
<identifier type="doi">10.18653/v1/2021.naacl-srw.19</identifier>
<location>
<url>https://aclanthology.org/2021.naacl-srw.19/</url>
</location>
<part>
<date>2021-06</date>
<extent unit="page">
<start>150</start>
<end>158</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Emotion Classification in a Resource Constrained Language Using Transformer-based Approach
%A Das, Avishek
%A Sharif, Omar
%A Hoque, Mohammed Moshiul
%A Sarker, Iqbal H.
%Y Durmus, Esin
%Y Gupta, Vivek
%Y Liu, Nelson
%Y Peng, Nanyun
%Y Su, Yu
%S Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop
%D 2021
%8 June
%I Association for Computational Linguistics
%C Online
%F das-etal-2021-emotion
%X Although research on emotion classification has significantly progressed in high-resource languages, it is still infancy for resource-constrained languages like Bengali. However, unavailability of necessary language processing tools and deficiency of benchmark corpora makes the emotion classification task in Bengali more challenging and complicated. This work proposes a transformer-based technique to classify the Bengali text into one of the six basic emotions: anger, fear, disgust, sadness, joy, and surprise. A Bengali emotion corpus consists of 6243 texts is developed for the classification task. Experimentation carried out using various machine learning (LR, RF, MNB, SVM), deep neural networks (CNN, BiLSTM, CNN+BiLSTM) and transformer (Bangla-BERT, m-BERT, XLM-R) based approaches. Experimental outcomes indicate that XLM-R outdoes all other techniques by achieving the highest weighted f_1-score of 69.73% on the test data.
%R 10.18653/v1/2021.naacl-srw.19
%U https://aclanthology.org/2021.naacl-srw.19/
%U https://doi.org/10.18653/v1/2021.naacl-srw.19
%P 150-158
Markdown (Informal)
[Emotion Classification in a Resource Constrained Language Using Transformer-based Approach](https://aclanthology.org/2021.naacl-srw.19/) (Das et al., NAACL 2021)
ACL