@inproceedings{rebuffel-etal-2021-data,
title = "Data-{Q}uest{E}val: A Referenceless Metric for Data-to-Text Semantic Evaluation",
author = "Rebuffel, Clement and
Scialom, Thomas and
Soulier, Laure and
Piwowarski, Benjamin and
Lamprier, Sylvain and
Staiano, Jacopo and
Scoutheeten, Geoffrey and
Gallinari, Patrick",
editor = "Moens, Marie-Francine and
Huang, Xuanjing and
Specia, Lucia and
Yih, Scott Wen-tau",
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-main.633",
doi = "10.18653/v1/2021.emnlp-main.633",
pages = "8029--8036",
abstract = "QuestEval is a reference-less metric used in text-to-text tasks, that compares the generated summaries directly to the source text, by automatically asking and answering questions. Its adaptation to Data-to-Text tasks is not straightforward, as it requires multimodal Question Generation and Answering systems on the considered tasks, which are seldom available. To this purpose, we propose a method to build synthetic multimodal corpora enabling to train multimodal components for a data-QuestEval metric. The resulting metric is reference-less and multimodal; it obtains state-of-the-art correlations with human judgment on the WebNLG and WikiBio benchmarks. We make data-QuestEval{'}s code and models available for reproducibility purpose, as part of the QuestEval project.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rebuffel-etal-2021-data">
<titleInfo>
<title>Data-QuestEval: A Referenceless Metric for Data-to-Text Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Clement</namePart>
<namePart type="family">Rebuffel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thomas</namePart>
<namePart type="family">Scialom</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laure</namePart>
<namePart type="family">Soulier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benjamin</namePart>
<namePart type="family">Piwowarski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sylvain</namePart>
<namePart type="family">Lamprier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jacopo</namePart>
<namePart type="family">Staiano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Geoffrey</namePart>
<namePart type="family">Scoutheeten</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patrick</namePart>
<namePart type="family">Gallinari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marie-Francine</namePart>
<namePart type="family">Moens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuanjing</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Specia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Scott</namePart>
<namePart type="given">Wen-tau</namePart>
<namePart type="family">Yih</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online and Punta Cana, Dominican Republic</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>QuestEval is a reference-less metric used in text-to-text tasks, that compares the generated summaries directly to the source text, by automatically asking and answering questions. Its adaptation to Data-to-Text tasks is not straightforward, as it requires multimodal Question Generation and Answering systems on the considered tasks, which are seldom available. To this purpose, we propose a method to build synthetic multimodal corpora enabling to train multimodal components for a data-QuestEval metric. The resulting metric is reference-less and multimodal; it obtains state-of-the-art correlations with human judgment on the WebNLG and WikiBio benchmarks. We make data-QuestEval’s code and models available for reproducibility purpose, as part of the QuestEval project.</abstract>
<identifier type="citekey">rebuffel-etal-2021-data</identifier>
<identifier type="doi">10.18653/v1/2021.emnlp-main.633</identifier>
<location>
<url>https://aclanthology.org/2021.emnlp-main.633</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>8029</start>
<end>8036</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Data-QuestEval: A Referenceless Metric for Data-to-Text Semantic Evaluation
%A Rebuffel, Clement
%A Scialom, Thomas
%A Soulier, Laure
%A Piwowarski, Benjamin
%A Lamprier, Sylvain
%A Staiano, Jacopo
%A Scoutheeten, Geoffrey
%A Gallinari, Patrick
%Y Moens, Marie-Francine
%Y Huang, Xuanjing
%Y Specia, Lucia
%Y Yih, Scott Wen-tau
%S Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
%D 2021
%8 November
%I Association for Computational Linguistics
%C Online and Punta Cana, Dominican Republic
%F rebuffel-etal-2021-data
%X QuestEval is a reference-less metric used in text-to-text tasks, that compares the generated summaries directly to the source text, by automatically asking and answering questions. Its adaptation to Data-to-Text tasks is not straightforward, as it requires multimodal Question Generation and Answering systems on the considered tasks, which are seldom available. To this purpose, we propose a method to build synthetic multimodal corpora enabling to train multimodal components for a data-QuestEval metric. The resulting metric is reference-less and multimodal; it obtains state-of-the-art correlations with human judgment on the WebNLG and WikiBio benchmarks. We make data-QuestEval’s code and models available for reproducibility purpose, as part of the QuestEval project.
%R 10.18653/v1/2021.emnlp-main.633
%U https://aclanthology.org/2021.emnlp-main.633
%U https://doi.org/10.18653/v1/2021.emnlp-main.633
%P 8029-8036
Markdown (Informal)
[Data-QuestEval: A Referenceless Metric for Data-to-Text Semantic Evaluation](https://aclanthology.org/2021.emnlp-main.633) (Rebuffel et al., EMNLP 2021)
ACL
- Clement Rebuffel, Thomas Scialom, Laure Soulier, Benjamin Piwowarski, Sylvain Lamprier, Jacopo Staiano, Geoffrey Scoutheeten, and Patrick Gallinari. 2021. Data-QuestEval: A Referenceless Metric for Data-to-Text Semantic Evaluation. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 8029–8036, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics.