@inproceedings{hossain-etal-2020-predicting,
title = "Predicting the Focus of Negation: Model and Error Analysis",
author = "Hossain, Md Mosharaf and
Hamilton, Kathleen and
Palmer, Alexis and
Blanco, Eduardo",
editor = "Jurafsky, Dan and
Chai, Joyce and
Schluter, Natalie and
Tetreault, Joel",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.acl-main.743/",
doi = "10.18653/v1/2020.acl-main.743",
pages = "8389--8401",
abstract = "The focus of a negation is the set of tokens intended to be negated, and a key component for revealing affirmative alternatives to negated utterances. In this paper, we experiment with neural networks to predict the focus of negation. Our main novelty is leveraging a scope detector to introduce the scope of negation as an additional input to the network. Experimental results show that doing so obtains the best results to date. Additionally, we perform a detailed error analysis providing insights into the main error categories, and analyze errors depending on whether the model takes into account scope and context information."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hossain-etal-2020-predicting">
<titleInfo>
<title>Predicting the Focus of Negation: Model and Error Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Md</namePart>
<namePart type="given">Mosharaf</namePart>
<namePart type="family">Hossain</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kathleen</namePart>
<namePart type="family">Hamilton</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eduardo</namePart>
<namePart type="family">Blanco</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Jurafsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Chai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The focus of a negation is the set of tokens intended to be negated, and a key component for revealing affirmative alternatives to negated utterances. In this paper, we experiment with neural networks to predict the focus of negation. Our main novelty is leveraging a scope detector to introduce the scope of negation as an additional input to the network. Experimental results show that doing so obtains the best results to date. Additionally, we perform a detailed error analysis providing insights into the main error categories, and analyze errors depending on whether the model takes into account scope and context information.</abstract>
<identifier type="citekey">hossain-etal-2020-predicting</identifier>
<identifier type="doi">10.18653/v1/2020.acl-main.743</identifier>
<location>
<url>https://aclanthology.org/2020.acl-main.743/</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>8389</start>
<end>8401</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Predicting the Focus of Negation: Model and Error Analysis
%A Hossain, Md Mosharaf
%A Hamilton, Kathleen
%A Palmer, Alexis
%A Blanco, Eduardo
%Y Jurafsky, Dan
%Y Chai, Joyce
%Y Schluter, Natalie
%Y Tetreault, Joel
%S Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F hossain-etal-2020-predicting
%X The focus of a negation is the set of tokens intended to be negated, and a key component for revealing affirmative alternatives to negated utterances. In this paper, we experiment with neural networks to predict the focus of negation. Our main novelty is leveraging a scope detector to introduce the scope of negation as an additional input to the network. Experimental results show that doing so obtains the best results to date. Additionally, we perform a detailed error analysis providing insights into the main error categories, and analyze errors depending on whether the model takes into account scope and context information.
%R 10.18653/v1/2020.acl-main.743
%U https://aclanthology.org/2020.acl-main.743/
%U https://doi.org/10.18653/v1/2020.acl-main.743
%P 8389-8401
Markdown (Informal)
[Predicting the Focus of Negation: Model and Error Analysis](https://aclanthology.org/2020.acl-main.743/) (Hossain et al., ACL 2020)
ACL
- Md Mosharaf Hossain, Kathleen Hamilton, Alexis Palmer, and Eduardo Blanco. 2020. Predicting the Focus of Negation: Model and Error Analysis. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 8389–8401, Online. Association for Computational Linguistics.