@inproceedings{tortoreto-etal-2019-affective,
title = "Affective Behaviour Analysis of On-line User Interactions: Are On-line Support Groups More Therapeutic than {T}witter?",
author = "Tortoreto, Giuliano and
Stepanov, Evgeny and
Cervone, Alessandra and
Dubiel, Mateusz and
Riccardi, Giuseppe",
editor = "Weissenbacher, Davy and
Gonzalez-Hernandez, Graciela",
booktitle = "Proceedings of the Fourth Social Media Mining for Health Applications ({\#}SMM4H) Workshop {\&} Shared Task",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-3211/",
doi = "10.18653/v1/W19-3211",
pages = "79--88",
abstract = "The increase in the prevalence of mental health problems has coincided with a growing popularity of health related social networking sites. Regardless of their therapeutic potential, on-line support groups (OSGs) can also have negative effects on patients. In this work we propose a novel methodology to automatically verify the presence of therapeutic factors in social networking websites by using Natural Language Processing (NLP) techniques. The methodology is evaluated on on-line asynchronous multi-party conversations collected from an OSG and Twitter. The results of the analysis indicate that therapeutic factors occur more frequently in OSG conversations than in Twitter conversations. Moreover, the analysis of OSG conversations reveals that the users of that platform are supportive, and interactions are likely to lead to the improvement of their emotional state. We believe that our method provides a stepping stone towards automatic analysis of emotional states of users of online platforms. Possible applications of the method include provision of guidelines that highlight potential implications of using such platforms on users' mental health, and/or support in the analysis of their impact on specific individuals."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tortoreto-etal-2019-affective">
<titleInfo>
<title>Affective Behaviour Analysis of On-line User Interactions: Are On-line Support Groups More Therapeutic than Twitter?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Giuliano</namePart>
<namePart type="family">Tortoreto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Evgeny</namePart>
<namePart type="family">Stepanov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandra</namePart>
<namePart type="family">Cervone</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mateusz</namePart>
<namePart type="family">Dubiel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giuseppe</namePart>
<namePart type="family">Riccardi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourth Social Media Mining for Health Applications (#SMM4H) Workshop & Shared Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Davy</namePart>
<namePart type="family">Weissenbacher</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Graciela</namePart>
<namePart type="family">Gonzalez-Hernandez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The increase in the prevalence of mental health problems has coincided with a growing popularity of health related social networking sites. Regardless of their therapeutic potential, on-line support groups (OSGs) can also have negative effects on patients. In this work we propose a novel methodology to automatically verify the presence of therapeutic factors in social networking websites by using Natural Language Processing (NLP) techniques. The methodology is evaluated on on-line asynchronous multi-party conversations collected from an OSG and Twitter. The results of the analysis indicate that therapeutic factors occur more frequently in OSG conversations than in Twitter conversations. Moreover, the analysis of OSG conversations reveals that the users of that platform are supportive, and interactions are likely to lead to the improvement of their emotional state. We believe that our method provides a stepping stone towards automatic analysis of emotional states of users of online platforms. Possible applications of the method include provision of guidelines that highlight potential implications of using such platforms on users’ mental health, and/or support in the analysis of their impact on specific individuals.</abstract>
<identifier type="citekey">tortoreto-etal-2019-affective</identifier>
<identifier type="doi">10.18653/v1/W19-3211</identifier>
<location>
<url>https://aclanthology.org/W19-3211/</url>
</location>
<part>
<date>2019-08</date>
<extent unit="page">
<start>79</start>
<end>88</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Affective Behaviour Analysis of On-line User Interactions: Are On-line Support Groups More Therapeutic than Twitter?
%A Tortoreto, Giuliano
%A Stepanov, Evgeny
%A Cervone, Alessandra
%A Dubiel, Mateusz
%A Riccardi, Giuseppe
%Y Weissenbacher, Davy
%Y Gonzalez-Hernandez, Graciela
%S Proceedings of the Fourth Social Media Mining for Health Applications (#SMM4H) Workshop & Shared Task
%D 2019
%8 August
%I Association for Computational Linguistics
%C Florence, Italy
%F tortoreto-etal-2019-affective
%X The increase in the prevalence of mental health problems has coincided with a growing popularity of health related social networking sites. Regardless of their therapeutic potential, on-line support groups (OSGs) can also have negative effects on patients. In this work we propose a novel methodology to automatically verify the presence of therapeutic factors in social networking websites by using Natural Language Processing (NLP) techniques. The methodology is evaluated on on-line asynchronous multi-party conversations collected from an OSG and Twitter. The results of the analysis indicate that therapeutic factors occur more frequently in OSG conversations than in Twitter conversations. Moreover, the analysis of OSG conversations reveals that the users of that platform are supportive, and interactions are likely to lead to the improvement of their emotional state. We believe that our method provides a stepping stone towards automatic analysis of emotional states of users of online platforms. Possible applications of the method include provision of guidelines that highlight potential implications of using such platforms on users’ mental health, and/or support in the analysis of their impact on specific individuals.
%R 10.18653/v1/W19-3211
%U https://aclanthology.org/W19-3211/
%U https://doi.org/10.18653/v1/W19-3211
%P 79-88
Markdown (Informal)
[Affective Behaviour Analysis of On-line User Interactions: Are On-line Support Groups More Therapeutic than Twitter?](https://aclanthology.org/W19-3211/) (Tortoreto et al., ACL 2019)
ACL