@inproceedings{shiue-etal-2017-detection,
title = "Detection of {C}hinese Word Usage Errors for Non-Native {C}hinese Learners with Bidirectional {LSTM}",
author = "Shiue, Yow-Ting and
Huang, Hen-Hsen and
Chen, Hsin-Hsi",
editor = "Barzilay, Regina and
Kan, Min-Yen",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-2064/",
doi = "10.18653/v1/P17-2064",
pages = "404--410",
abstract = "Selecting appropriate words to compose a sentence is one common problem faced by non-native Chinese learners. In this paper, we propose (bidirectional) LSTM sequence labeling models and explore various features to detect word usage errors in Chinese sentences. By combining CWINDOW word embedding features and POS information, the best bidirectional LSTM model achieves accuracy 0.5138 and MRR 0.6789 on the HSK dataset. For 80.79{\%} of the test data, the model ranks the ground-truth within the top two at position level."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shiue-etal-2017-detection">
<titleInfo>
<title>Detection of Chinese Word Usage Errors for Non-Native Chinese Learners with Bidirectional LSTM</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yow-Ting</namePart>
<namePart type="family">Shiue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hen-Hsen</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hsin-Hsi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Barzilay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Selecting appropriate words to compose a sentence is one common problem faced by non-native Chinese learners. In this paper, we propose (bidirectional) LSTM sequence labeling models and explore various features to detect word usage errors in Chinese sentences. By combining CWINDOW word embedding features and POS information, the best bidirectional LSTM model achieves accuracy 0.5138 and MRR 0.6789 on the HSK dataset. For 80.79% of the test data, the model ranks the ground-truth within the top two at position level.</abstract>
<identifier type="citekey">shiue-etal-2017-detection</identifier>
<identifier type="doi">10.18653/v1/P17-2064</identifier>
<location>
<url>https://aclanthology.org/P17-2064/</url>
</location>
<part>
<date>2017-07</date>
<extent unit="page">
<start>404</start>
<end>410</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Detection of Chinese Word Usage Errors for Non-Native Chinese Learners with Bidirectional LSTM
%A Shiue, Yow-Ting
%A Huang, Hen-Hsen
%A Chen, Hsin-Hsi
%Y Barzilay, Regina
%Y Kan, Min-Yen
%S Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2017
%8 July
%I Association for Computational Linguistics
%C Vancouver, Canada
%F shiue-etal-2017-detection
%X Selecting appropriate words to compose a sentence is one common problem faced by non-native Chinese learners. In this paper, we propose (bidirectional) LSTM sequence labeling models and explore various features to detect word usage errors in Chinese sentences. By combining CWINDOW word embedding features and POS information, the best bidirectional LSTM model achieves accuracy 0.5138 and MRR 0.6789 on the HSK dataset. For 80.79% of the test data, the model ranks the ground-truth within the top two at position level.
%R 10.18653/v1/P17-2064
%U https://aclanthology.org/P17-2064/
%U https://doi.org/10.18653/v1/P17-2064
%P 404-410
Markdown (Informal)
[Detection of Chinese Word Usage Errors for Non-Native Chinese Learners with Bidirectional LSTM](https://aclanthology.org/P17-2064/) (Shiue et al., ACL 2017)
ACL