@inproceedings{wu-etal-2017-improving,
title = "Improving Implicit Discourse Relation Recognition with Discourse-specific Word Embeddings",
author = "Wu, Changxing and
Shi, Xiaodong and
Chen, Yidong and
Su, Jinsong and
Wang, Boli",
editor = "Barzilay, Regina and
Kan, Min-Yen",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-2042",
doi = "10.18653/v1/P17-2042",
pages = "269--274",
abstract = "We introduce a simple and effective method to learn discourse-specific word embeddings (DSWE) for implicit discourse relation recognition. Specifically, DSWE is learned by performing connective classification on massive explicit discourse data, and capable of capturing discourse relationships between words. On the PDTB data set, using DSWE as features achieves significant improvements over baselines.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wu-etal-2017-improving">
<titleInfo>
<title>Improving Implicit Discourse Relation Recognition with Discourse-specific Word Embeddings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Changxing</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodong</namePart>
<namePart type="family">Shi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yidong</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jinsong</namePart>
<namePart type="family">Su</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Boli</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Barzilay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We introduce a simple and effective method to learn discourse-specific word embeddings (DSWE) for implicit discourse relation recognition. Specifically, DSWE is learned by performing connective classification on massive explicit discourse data, and capable of capturing discourse relationships between words. On the PDTB data set, using DSWE as features achieves significant improvements over baselines.</abstract>
<identifier type="citekey">wu-etal-2017-improving</identifier>
<identifier type="doi">10.18653/v1/P17-2042</identifier>
<location>
<url>https://aclanthology.org/P17-2042</url>
</location>
<part>
<date>2017-07</date>
<extent unit="page">
<start>269</start>
<end>274</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Improving Implicit Discourse Relation Recognition with Discourse-specific Word Embeddings
%A Wu, Changxing
%A Shi, Xiaodong
%A Chen, Yidong
%A Su, Jinsong
%A Wang, Boli
%Y Barzilay, Regina
%Y Kan, Min-Yen
%S Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2017
%8 July
%I Association for Computational Linguistics
%C Vancouver, Canada
%F wu-etal-2017-improving
%X We introduce a simple and effective method to learn discourse-specific word embeddings (DSWE) for implicit discourse relation recognition. Specifically, DSWE is learned by performing connective classification on massive explicit discourse data, and capable of capturing discourse relationships between words. On the PDTB data set, using DSWE as features achieves significant improvements over baselines.
%R 10.18653/v1/P17-2042
%U https://aclanthology.org/P17-2042
%U https://doi.org/10.18653/v1/P17-2042
%P 269-274
Markdown (Informal)
[Improving Implicit Discourse Relation Recognition with Discourse-specific Word Embeddings](https://aclanthology.org/P17-2042) (Wu et al., ACL 2017)
ACL