[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

内蒙古东七一山花岗质杂岩的形成演化及对成矿的贡献:年代学及地球化学证据

张善明, 胡雅璐, 王根厚, 胡二红, 胡华斌, 周彦波, 何泽宇. 2023. 内蒙古东七一山花岗质杂岩的形成演化及对成矿的贡献:年代学及地球化学证据. 岩石学报, 39(6): 1791-1816. doi: 10.18654/1000-0569/2023.06.13
引用本文: 张善明, 胡雅璐, 王根厚, 胡二红, 胡华斌, 周彦波, 何泽宇. 2023. 内蒙古东七一山花岗质杂岩的形成演化及对成矿的贡献:年代学及地球化学证据. 岩石学报, 39(6): 1791-1816. doi: 10.18654/1000-0569/2023.06.13
ZHANG ShanMing, HU YaLu, WANG GenHou, HU ErHong, HU HuaBin, ZHOU YanBo, HE ZeYu. 2023. Formation, evolution of the granitic complex and its contribution to mineralization in Dongqiyishan deposit, Inner Mongolia: Chronological and geochemical evidences. Acta Petrologica Sinica, 39(6): 1791-1816. doi: 10.18654/1000-0569/2023.06.13
Citation: ZHANG ShanMing, HU YaLu, WANG GenHou, HU ErHong, HU HuaBin, ZHOU YanBo, HE ZeYu. 2023. Formation, evolution of the granitic complex and its contribution to mineralization in Dongqiyishan deposit, Inner Mongolia: Chronological and geochemical evidences. Acta Petrologica Sinica, 39(6): 1791-1816. doi: 10.18654/1000-0569/2023.06.13

内蒙古东七一山花岗质杂岩的形成演化及对成矿的贡献:年代学及地球化学证据

  • 基金项目:

    本文受国家重点研发计划项目(2019YFC0605202)和国家自然科学基金项目(42202219)联合资助

详细信息
    作者简介:

    张善明,男,1983年生,博士,教授级高级工程师,主要从事岩石学和地球化学研究,E-mail: shanming.zhang@163.com

    通讯作者: 胡华斌,男,1966年生,博士,教授,主要从事矿床学和矿床地球化学的研究工作,E-mail: huhb27@163.com
  • 中图分类号: P588.121;P597.3;P618.67

Formation, evolution of the granitic complex and its contribution to mineralization in Dongqiyishan deposit, Inner Mongolia: Chronological and geochemical evidences

More Information
  • 内蒙古东七一山钨多金属矿位于北山造山带东段,是一个以钨为主,共伴生锡、钼、铷、铍、铌、钽、铁和萤石的综合型矿床。本次工作对含矿花岗质杂岩开展了岩石学、地球化学、锆石U-Pb及辉钼矿Re-Os年代学研究。富W-Sn-Mo花岗岩岩性为细粒似斑状二长花岗岩、中细粒似斑状二长花岗岩、花岗斑岩,结晶年龄分别为220.6±1.6Ma、220.4±1.3Ma和220.0±1.1Ma。富Rb-Be-Nb-Ta花岗岩岩性为中粗粒钠长石化似斑状二长花岗岩,结晶年龄为219.9±1.9Ma。辉钼矿Re-Os定年获得加权平均年龄为211±1Ma(MSWD=0.83),说明成岩成矿发生在晚三叠世。含矿花岗质杂岩均具有高硅、富碱、贫铁镁钙特征,为高钾钙碱性花岗岩。其中,富W-Sn-Mo花岗岩为准铝质-过铝质花岗岩;而富Rb-Be-Nb-Ta花岗岩为强过铝质花岗岩。杂岩体轻重稀土具一定分馏,呈现显著的负Eu异常,均富集Rb、K、U、Ta,强烈亏损Ba、Nb、Sr、P、Ti、Zr、Hf。与富W-Sn-Mo花岗岩相比,富Rb-Be-Nb-Ta花岗岩具更低的稀土总量,更显著的Eu负异常,并显示微弱的稀土四分组效应,更高的Li、Ta含量,更低的P、Ti、Zr、Hf、W、Mo、Bi含量。时空关系和地球化学特征表明,杂岩体为同一次岩浆活动不同演化阶段的产物,均经历了较高程度的结晶分异和较强的熔体-流体相互作用。相比而言,富Rb-Be-Nb-Ta花岗岩比富W-Sn-Mo花岗岩结晶分异程度更高,熔体-流体作用更强,花岗质岩浆的高程度分离结晶和熔体-流体相互作用是形成该杂岩体并促使成矿的重要控制因素。

  • 加载中
  • 图 1 

    北山区域地质图(据Song et al., 2013修改)

    Figure 1. 

    Geological map of the Beishan Orogen(modified after Song et al., 2013)

    图 2 

    东七一山钨多金属矿矿区地质图

    Figure 2. 

    Mining area geological map of Dongqiyishan tungsten polymetallic deposit

    图 3 

    东七一山钨多金属矿44号勘探线剖面图

    Figure 3. 

    Cross section of No.44 exploratioin line in Dongqiyishan tungsten polymetallic deposit

    图 4 

    东七一山矿区富W-Sn-Mo似斑状二长花岗岩(a、d)、富W-Sn-Mo花岗斑岩(b、e)和富Rb-Be-Nb-Ta钠长石化似斑状二长花岗岩(c、f)手标本及显微照片

    Figure 4. 

    Sample photographs and microphotographs of W-Sn-Mo-rich porphyraceous monzonitic granite(a, d), W-Sn-Mo-rich granite porphyry(b, e) and Rb-Be-Nb-Ta-rich albite porphyraceous monzonitic granite(c, f)in Dongqiyishan deposit

    图 5 

    东七一山矿区花岗质杂岩代表性锆石CL图像

    Figure 5. 

    CL images of representative zircons from the granitic complex in Dongqiyishan deposit

    图 6 

    东七一山矿区花岗质杂岩锆石U-Pb协和年龄图

    Figure 6. 

    U-Pb concrodia diagrams for zircons from the granitic complex in Dongqiyishan deposit

    图 7 

    东七一山矿区花岗质杂岩QAP图解(a,据Streckeisen,1976)、TAS图解(b,Ir-Irvine分界线,上方为碱性,下方为亚碱性,据Middlemost,1994)、K2O-SiO2(c,据Peccerillo and Taylor, 1976)和A/NK-A/CNK图解(d,据Maniar and Piccpli, 1989)

    Figure 7. 

    Diagrams of QAP(a, after Streckeisen, 1976), TAS(b, Ir-Irvin, the dividing line is alkaline above and subalkaline below, after Middlemost, 1994), SiO2 vs. K2O(c, after Peccerillo and Taylor, 1976) and A/CNK vs. A/NK (d, after Maniar and Piccpli, 1989) for the granitic complex in Dongqiyishan deposit

    图 8 

    东七一山矿区花岗质杂岩球粒陨石标准化稀土元素配分曲线(a, 标准化值据Boynton, 1984)和原始地幔标准化微量元素蛛网图(b, 标准化值据Sun and McDonough, 1989)

    Figure 8. 

    Chondrite-normalized REE patterns (a, normalization values after Boynton, 1984) and primitive mantle-normalized trace element spider diagrams (b, normalization values after Sun and McDonough, 1989) of the granitic complex in Dongqiyishan deposit

    图 9 

    东七一山钨多金属矿辉钼矿Re-Os等时线年龄图(a)与加权平均年龄图(b)

    Figure 9. 

    Molybdenite Re-Os isochron (a) and weighted mean ages (b) of the Dongqiyishan tungsten-polymetallic deposit

    图 10 

    东七一山花岗质杂岩岩石成因类型判别图解(据Whalen et al., 1987)

    Figure 10. 

    Chemical classification diagrams for the Dongqiyishan granitic complex(after Whalen et al., 1987)

    图 11 

    东七一山花岗质杂岩锆石Hf同位素演化图解

    Figure 11. 

    Hf isotope evolution diagrams for representative zircons of the Dongqiyishan granitic complex

    图 12 

    东七一山花岗质杂岩SiO2对Rb(a)、P(b)、Sr(c)和Ba(d)的哈克图解

    Figure 12. 

    Harker diagrams for the variations of SiO2 against Rb (a), P(b), Sr (c) and Ba (d) of the Dongqiyishan granitic complex

    图 13 

    东七一山花岗质杂岩中Zr含量对TiO2、Hf、Y、Zr/Hf、Nb/Ta、∑REE、LREE、HREE、Ta、Rb、Sr和Rb/Sr相关性图解

    Figure 13. 

    Variations of Zr against TiO2, Hf, Y, Zr/Hf, Nb/Ta, ∑REE, LREE, HREE, Ta, Rb, Sr and Rb/Sr of the Dongqiyishan granitic complex

    图 14 

    东七一山花岗质杂岩演化程度判别图

    Figure 14. 

    Discrimination diagrams for evolution degree of the Dongqiyishan granitic complex

    图 15 

    东七一山钨多金属矿成矿系统的成矿模式

    Figure 15. 

    Ore deposit model of the Dongqiyishan tungsten polymetallic metallogenic system

    表 1 

    东七一山矿区花岗质杂岩锆石U-Pb同位素分析结果

    Table 1. 

    Zircon U-Pb analyses of the granitic complex in Dongqiyishan deposit

    测点号 U Th Th/U 同位素比值 同位素年龄(Ma)
    (×10-6) 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U
    Ratio 1σ Ratio 1σ Ratio 1σ Age 1σ Age 1σ Age 1σ
    QN1中细粒似斑状二长花岗岩
    -1 1844 556 0.30 0.0563 0.0017 0.2700 0.0087 0.0347 0.0004 465 69 243 7 220 2
    -3 766 308 0.40 0.0615 0.0022 0.2939 0.0114 0.0346 0.0005 657 71 262 9 219 3
    -4 848 359 0.42 0.0562 0.0020 0.2706 0.0091 0.0349 0.0003 461 75 243 7 221 2
    -5 1396 499 0.36 0.0563 0.0019 0.2716 0.0109 0.0349 0.0004 465 76 244 9 221 3
    -6 556 255 0.46 0.0546 0.0040 0.2647 0.0175 0.0352 0.0006 394 160 238 14 223 4
    -8 381 170 0.45 0.0564 0.0025 0.2689 0.0112 0.0347 0.0005 478 96 242 9 220 3
    -9 534 232 0.43 0.0561 0.0034 0.2702 0.0166 0.0349 0.0004 454 132 243 13 221 2
    -17 469 185 0.39 0.0581 0.0020 0.2794 0.0108 0.0348 0.0005 600 78 250 9 220 3
    -18 1277 518 0.41 0.0520 0.0015 0.2492 0.0077 0.0347 0.0004 287 69 226 6 220 2
    -19 1163 431 0.37 0.0558 0.0012 0.2679 0.0064 0.0347 0.0004 456 48 241 5 220 2
    -22 401 153 0.38 0.0624 0.0038 0.2980 0.0182 0.0347 0.0006 687 131 265 14 220 4
    -24 664 272 0.41 0.0548 0.0026 0.2624 0.0120 0.0347 0.0003 406 106 237 10 220 2
    -25 891 362 0.41 0.0536 0.0024 0.2556 0.0099 0.0347 0.0004 354 100 231 8 220 3
    -27 214 110 0.51 0.0573 0.0043 0.2747 0.0201 0.0348 0.0006 502 163 246 16 221 4
    QN2细粒似斑状二长花岗岩
    -2 795 644 0.81 0.0526 0.0019 0.2524 0.0097 0.0347 0.0003 322 81 228 8 220 2
    -3 1890 658 0.35 0.0552 0.0016 0.2659 0.0064 0.0350 0.0005 417 65 239 5 222 3
    -5 1240 493 0.40 0.6140 0.0219 21.1448 2.1530 0.2312 0.0196 4542 52 3145 99 1341 103
    -6 1203 510 0.42 0.0554 0.0046 0.2641 0.0077 0.0347 0.0004 428 190 238 6 220 3
    -7 1069 458 0.43 0.0565 0.0040 0.2712 0.0144 0.0350 0.0010 472 156 244 12 222 6
    -9 1083 511 0.47 0.0540 0.0016 0.2592 0.0076 0.0348 0.0003 369 67 234 6 221 2
    -11 971 354 0.37 0.0531 0.0021 0.2566 0.0099 0.0350 0.0003 345 82 232 8 222 2
    -13 852 366 0.43 0.0550 0.0036 0.2624 0.0163 0.0347 0.0006 413 146 237 13 220 4
    -15 894 557 0.62 0.0602 0.0032 0.2867 0.0146 0.0346 0.0006 613 110 256 12 219 3
    -19 1097 411 0.37 0.0571 0.0036 0.2747 0.0198 0.0348 0.0008 494 139 246 16 221 5
    -21 886 422 0.48 0.0562 0.0019 0.2684 0.0088 0.0347 0.0004 461 108 241 7 220 3
    -24 713 290 0.41 0.0552 0.0039 0.2650 0.0174 0.0350 0.0005 420 157 239 14 222 3
    QN3花岗斑岩
    -2 181 86 0.47 0.0539 0.0032 0.2564 0.0147 0.0348 0.0005 369 135 232 12 221 3
    -3 305 164 0.54 0.0533 0.0029 0.2543 0.0134 0.0347 0.0005 343 124 230 11 220 3
    -4 631 193 0.31 0.0573 0.0021 0.2749 0.0107 0.0348 0.0005 506 81 247 9 221 3
    -5 586 300 0.51 0.0564 0.0027 0.2698 0.0139 0.0347 0.0005 478 103 242 11 220 3
    -6 191 66 0.35 0.0511 0.0027 0.2426 0.0131 0.0346 0.0005 256 124 221 11 219 3
    -7 883 205 0.23 0.0620 0.0021 0.2979 0.0104 0.0349 0.0004 676 68 265 8 221 3
    -8 542 159 0.29 0.0528 0.0019 0.2532 0.0094 0.0348 0.0003 320 80 229 8 220 2
    -9 1320 379 0.29 0.0523 0.0015 0.2492 0.0071 0.0347 0.0003 298 67 226 6 220 2
    -10 220 108 0.49 0.0512 0.0033 0.2464 0.0167 0.0348 0.0006 250 150 224 14 221 4
    -12 404 117 0.29 0.0573 0.0025 0.2746 0.0115 0.0349 0.0004 502 64 246 9 221 3
    -13 496 143 0.29 0.0527 0.0025 0.2525 0.0114 0.0348 0.0004 322 103 229 9 221 3
    -16 296 102 0.34 0.0558 0.0025 0.2668 0.0121 0.0347 0.0004 456 102 240 10 220 2
    -17 207 85 0.41 0.0520 0.0027 0.2487 0.0124 0.0348 0.0004 287 151 226 10 221 3
    -18 403 130 0.32 0.0530 0.0030 0.2597 0.0120 0.0348 0.0003 328 128 234 10 220 2
    -20 197 98 0.50 0.0550 0.0042 0.2621 0.0206 0.0345 0.0005 413 170 236 17 219 3
    -23 1568 477 0.30 0.0537 0.0025 0.2579 0.0092 0.0350 0.0005 367 103 233 7 222 3
    -25 154 55 0.36 0.0527 0.0042 0.2498 0.0194 0.0345 0.0004 322 183 226 16 219 2
    -28 308 77 0.25 0.0533 0.0028 0.2542 0.0130 0.0347 0.0004 343 119 230 10 220 2
    -29 863 204 0.24 0.0553 0.0017 0.2637 0.0089 0.0345 0.0004 433 70 238 7 219 2
    -30 282 108 0.38 0.0538 0.0021 0.2561 0.0099 0.0345 0.0004 365 87 232 8 219 2
    QN7钠长石化中粗粒似斑状二长花岗岩
    -2 271 129 0.48 0.0564 0.0018 0.2684 0.0105 0.0345 0.0009 478 101 241 8 219 5
    -6 1925 1878 0.98 0.1350 0.0017 7.0621 0.1095 0.3790 0.0046 2165 22 2119 14 2072 22
    -8 1432 476 0.33 0.0693 0.0021 0.3292 0.0096 0.0345 0.0004 907 63 289 7 219 2
    -9 797 25 0.03 0.1122 0.0018 4.7301 0.0763 0.3056 0.0022 1836 29 1773 14 1719 11
    -11 1309 294 0.22 0.1125 0.0015 5.0882 0.0818 0.3281 0.0038 1840 24 1834 14 1829 19
    -13 985 327 0.33 0.0679 0.0033 0.3305 0.0175 0.0353 0.0005 865 100 290 13 223 3
    -16 5222 987 0.19 0.0562 0.0011 0.2681 0.0052 0.0346 0.0004 461 43 241 4 219 2
    -18 1120 271 0.24 0.0642 0.0042 0.3094 0.0182 0.0350 0.0005 748 137 274 14 222 3
    -21 1526 413 0.27 0.1159 0.0013 5.3495 0.0665 0.3347 0.0023 1894 20 1877 11 1861 11
    -22 1161 227 0.20 0.0628 0.0020 0.3001 0.0095 0.0347 0.0002 702 67 266 7 220 2
    -25 1000 1073 1.07 0.1357 0.0022 6.9659 0.1632 0.3722 0.0080 2174 28 2107 21 2040 38
    下载: 导出CSV

    表 2 

    东七一山矿区花岗质杂岩地球化学分析结果(主量元素:wt%;微量和稀土元素:×10-6)

    Table 2. 

    Geochemical data of the granitic complex in Dongqiyishan deposit (major elements: wt%; trace elements: ×10-6)

    样品号 QX1 QX2 QX4 QX5 HX1 HX2 HX3 HX4 HX5 HX6 HX7 均值
    岩性 富W-Sn-Mo似斑状二长花岗岩
    SiO2 76.22 75.75 78.08 77.21 75.30 75.50 75.57 75.10 74.42 78.62 75.22 76.09
    TiO2 0.04 0.04 0.03 0.03 0.02 0.02 0.02 0.02 0.01 0.00 0.01 0.02
    Al2O3 12.44 12.64 10.21 12.41 13.34 13.45 13.39 13.44 14.42 12.03 13.93 12.88
    Fe2O3 0.09 0.03 0.05 0.07 0.27 0.20 0.32 0.25 0.12 0.18 0.11 0.15
    FeO 0.18 0.70 0.45 0.37 0.79 0.70 0.80 0.73 0.72 0.46 0.42 0.58
    MnO 0.02 0.04 0.03 0.02 0.04 0.05 0.08 0.07 0.06 0.07 0.04 0.05
    MgO 0.07 0.08 0.07 0.09 0.09 0.05 0.05 0.07 0.06 0.03 0.06 0.07
    CaO 1.10 0.81 2.58 0.69 0.62 0.56 0.54 0.60 0.39 0.35 0.33 0.78
    Na2O 3.55 3.44 3.11 3.86 3.74 4.13 4.11 4.41 4.95 2.64 4.63 3.87
    K2O 5.49 5.74 4.05 4.52 4.81 4.37 4.13 4.42 4.13 4.91 4.64 4.66
    P2O5 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01
    LOI 0.75 0.62 1.25 0.64 0.86 0.86 0.88 0.81 0.61 0.63 0.54 0.77
    Total 99.96 99.91 99.93 99.94 99.90 99.90 99.89 99.90 99.91 99.94 99.94 99.92
    (Na2O+K2O)/CaO 8.19 11.29 2.78 12.22 13.89 15.05 15.16 14.68 23.39 21.85 28.37 15.17
    A/CNK 0.90 0.94 0.72 0.99 1.07 1.07 1.09 1.02 1.08 1.17 1.05 1.01
    Mg# 47.83 39.81 45.50 51.11 24.76 20.21 13.67 23.28 27.00 15.55 33.79 31.14
    La 48.65 39.04 42.74 34.78 20.99 26.60 17.10 32.43 13.55 14.88 9.59 27.30
    Ce 125.2 102.2 112.9 92.16 48.31 54.38 52.63 72.96 37.21 45.86 33.99 70.71
    Pr 15.48 12.66 14.87 11.49 5.79 7.72 4.91 9.35 3.61 4.06 2.65 8.42
    Nd 58.93 47.60 60.68 44.14 21.92 29.47 18.62 35.82 12.77 13.46 9.80 32.11
    Sm 17.01 14.36 21.16 12.89 6.83 9.29 6.10 10.65 3.85 3.85 3.02 9.91
    Eu 0.15 0.12 0.12 0.10 0.07 0.04 0.03 0.04 0.02 0.01 0.02 0.07
    Gd 15.72 13.24 20.73 11.62 6.63 8.91 5.84 9.44 3.53 3.15 2.80 9.24
    Tb 3.36 2.90 4.68 2.47 1.83 2.35 1.61 2.29 0.98 0.79 0.78 2.19
    Dy 24.43 20.99 34.72 17.47 12.32 15.49 10.66 14.66 6.36 4.80 5.16 15.19
    Ho 5.08 4.34 7.10 3.54 2.52 3.06 2.09 2.94 1.25 0.88 1.02 3.07
    Er 15.91 13.67 21.66 11.10 8.23 10.08 6.74 9.42 4.07 2.75 3.37 9.73
    Tm 2.92 2.66 3.95 2.10 1.64 1.94 1.32 1.76 0.84 0.55 0.67 1.85
    Yb 19.84 18.26 26.70 13.91 12.86 14.96 10.11 13.46 6.41 4.17 5.13 13.26
    Lu 2.91 2.67 3.71 2.09 1.83 2.11 1.45 1.89 0.89 0.55 0.72 1.89
    ∑REE 355.6 294.7 375.8 260.0 151.8 186.4 139.2 217.2 95.34 99.76 78.72 204.9
    LREE 265.4 216.0 252.5 195.6 103.9 127.5 99.39 161.3 71.01 82.12 59.07 148.5
    HREE 90.17 78.73 123.3 64.30 47.86 58.90 39.82 55.86 24.33 17.64 19.65 56.41
    LREE/HREE 2.94 2.74 2.05 3.04 2.17 2.16 2.50 2.89 2.92 4.66 3.01 2.63
    (La/Yb)N 1.76 1.53 1.15 1.79 1.17 1.28 1.21 1.73 1.52 2.56 1.34 1.55
    (La/Sm)N 1.85 1.75 1.30 1.74 1.98 1.85 1.81 1.97 2.27 2.49 2.05 1.91
    (Sm/Yb)N 0.95 0.87 0.88 1.03 0.59 0.69 0.67 0.88 0.67 1.03 0.65 0.81
    (Gd/Yb)N 0.66 0.60 0.64 0.69 0.43 0.49 0.48 0.58 0.46 0.63 0.45 0.56
    δEu 0.03 0.03 0.02 0.02 0.03 0.01 0.01 0.01 0.02 0.01 0.02 0.02
    δCe 1.11 1.12 1.10 1.12 1.06 0.92 1.39 1.01 1.28 1.42 1.62 1.20
    Rb 1449 1532 1095 1175 1154 1098 1195 1129 1143 1178 1179 1212
    Ba 23.08 18.10 28.57 22.62 39.33 35.21 20.14 12.16 11.41 8.01 12.87 21.05
    Th 67.55 53.39 52.56 57.34 29.29 37.74 27.94 36.27 19.28 12.22 15.09 37.15
    U 54.49 23.57 11.59 7.40 7.04 8.82 5.63 8.02 3.54 1.89 4.03 12.37
    K 45955 48024 34100 37824 40311 36636 34637 36991 34555 41078 38712 38984
    Ta 9.60 14.45 9.13 15.27 13.25 8.46 9.59 8.24 17.49 22.48 24.05 13.82
    Nb 64.87 73.47 43.68 60.04 51.35 44.95 52.04 50.24 59.35 103.1 60.11 60.29
    Sr 28.47 18.76 27.52 22.72 25.78 23.14 12.68 18.89 10.23 12.44 39.77 21.85
    P 74.63 49.10 52.49 57.00 71.72 32.32 26.52 27.89 37.46 41.06 33.72 45.81
    Zr 120.1 109.9 100.2 105.0 68.40 76.26 76.68 98.95 66.40 22.90 53.93 81.70
    Hf 7.71 7.59 6.90 7.25 5.06 6.78 6.10 8.61 5.86 1.66 4.25 6.16
    Ti 224.7 213.0 183.8 197.5 125.0 96.18 104.1 97.63 58.80 21.97 51.46 124.9
    Ga 27.04 28.71 23.44 26.16 29.80 28.61 25.16 24.74 27.69 21.14 27.54 26.37
    Y 154.0 127.8 198.0 109.2 62.45 81.68 50.28 70.84 28.90 18.96 27.82 84.54
    TE1,3 1.12 1.14 1.13 1.14 1.17 1.13 1.27 1.13 1.26 1.31 1.33 1.19
    样品号 HBX1 QX3 HBX2 HBX3 HBX4 HBX5 HBX6 均值
    岩性 富W-Sn-Mo花岗斑岩
    SiO2 74.54 75.21 73.23 78.63 75.26 75.68 73.96 75.21
    TiO2 0.00 0.15 0.04 0.05 0.03 0.03 0.04 0.05
    Al2O3 14.12 12.12 13.20 12.88 12.81 12.94 12.58 12.95
    Fe2O3 0.10 0.21 0.12 0.13 0.11 0.03 0.01 0.10
    FeO 0.46 0.96 0.16 0.21 0.04 0.10 0.14 0.30
    MnO 0.03 0.03 0.01 0.02 0.01 0.01 0.01 0.01
    MgO 0.06 0.19 0.08 0.12 0.08 0.07 0.06 0.10
    CaO 0.66 1.40 4.34 2.56 2.29 1.75 3.35 2.34
    Na2O 4.99 3.97 4.76 1.07 4.33 4.42 3.05 3.80
    K2O 4.33 4.35 1.64 1.92 3.60 3.81 5.20 3.55
    P2O5 0.01 0.03 0.01 0.04 0 0.01 0.02 0.02
    LOI 0.65 1.20 2.35 2.32 1.36 1.07 1.52 1.50
    Total 99.93 99.82 99.95 99.95 99.92 99.91 99.93 99.92
    (Na2O+K2O)/CaO 14.16 5.96 1.47 1.17 3.46 4.69 2.46 2.10
    A/CNK 1.00 0.88 0.75 1.51 0.84 0.89 0.75 0.70
    Mg# 33.16 43.88 48.19 54.06 54.86 72.62 71.44 43.35
    La 14.66 81.31 14.72 43.55 11.52 15.31 34.42 30.78
    Ce 39.91 180.3 33.90 104.5 36.82 38.92 69.73 72.02
    Pr 4.18 19.53 4.02 12.50 2.97 3.59 8.47 7.90
    Nd 15.72 66.52 15.91 45.04 11.62 13.74 30.75 28.47
    Sm 5.22 13.25 4.89 11.11 3.66 3.95 7.78 7.12
    Eu 0.02 0.68 0.09 0.30 0.13 0.14 0.25 0.23
    Gd 4.60 11.58 4.94 10.22 4.09 4.53 7.32 6.75
    Tb 1.30 1.88 1.36 2.45 1.31 1.34 1.79 1.63
    Dy 8.59 11.97 9.42 15.59 10.26 10.21 11.35 11.06
    Ho 1.64 2.33 1.95 3.17 2.32 2.29 2.39 2.99
    Er 5.49 7.19 6.69 10.32 8.39 8.32 8.06 7.78
    Tm 1.15 1.31 1.35 1.91 1.77 1.65 1.59 1.53
    Yb 9.22 9.02 10.64 14.26 14.18 12.84 12.06 11.75
    Lu 1.28 1.35 1.58 2.06 2.06 1.87 1.80 1.71
    ∑REE 113.0 409.2 111.5 277.0 111.1 118.7 197.8 191.2
    LREE 79.71 362.6 73.53 217.0 66.72 75.65 151.4 146.7
    HREE 33.27 46.63 37.93 59.98 44.38 43.05 46.36 44.51
    LREE/HREE 2.40 7.78 1.94 3.62 1.50 1.76 3.27 3.18
    (La/Yb)N 1.14 6.47 0.99 2.19 0.58 0.86 2.05 2.04
    (La/Sm)N 1.81 3.96 1.94 2.53 2.03 2.50 2.86 2.52
    (Sm/Yb)N 0.63 1.63 0.51 0.87 0.29 0.34 0.72 0.71
    (Gd/Yb)N 0.41 1.06 0.38 0.59 0.24 0.29 0.50 0.50
    δEu 0.01 0.16 0.06 0.09 0.10 0.10 0.10 0.09
    δCe 1.23 1.07 1.06 1.08 1.51 1.24 0.97 1.17
    Rb 1078 716.8 366.6 459.8 411.2 407.7 974.8 630.7
    Ba 36.69 321.2 24.78 96.95 406.7 523.4 375.6 255.0
    Th 19.17 70.50 30.05 53.82 38.45 36.94 36.53 40.78
    U 5.51 30.11 12.66 12.05 19.99 16.99 18.92 16.60
    K 36178 36580 13981 16335 30282 31996 43855 29887
    Ta 17.95 4.41 11.22 8.88 10.97 10.71 13.75 11.13
    Nb 46.39 41.78 54.60 43.59 51.38 52.96 50.93 48.80
    Sr 25.70 73.00 69.40 47.80 45.70 49.40 52.30 51.90
    P 33.42 128.2 45.81 160.0 14.97 21.92 75.09 68.48
    Zr 63.01 192.6 104.5 110.3 100.3 99.00 88.19 108.3
    Hf 6.03 8.40 6.69 6.48 6.84 6.74 5.97 6.74
    Ti 0 933.4 259.1 315.0 154.2 168.9 228.4 294.1
    Ga 27.94 22.84 26.67 12.15 24.30 21.49 22.08 22.50
    Y 32.78 60.85 55.64 85.11 72.70 76.01 69.47 64.65
    TE1,3 1.25 1.06 1.16 1.16 1.28 1.19 1.11 1.17
    样品号 QX6 QX7 QX8 QX9 QX10 RbX1 RbX2 RbX3 均值
    岩性 富Rb-Be-Nb-Ta钠长石化似斑状二长花岗岩
    SiO2 71.55 70.06 70.89 72.78 70.13 73.18 71.37 72.74 71.59
    TiO2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
    Al2O3 17.73 17.85 17.93 16.86 17.67 15.62 16.67 16.38 17.09
    Fe2O3 0.13 0.06 0.04 0.07 0.02 0.02 0.03 0.03 0.05
    FeO 0.25 0.18 0.13 0.24 0.21 0.19 0.23 0.19 0.20
    MnO 0.09 0.03 0.03 0.06 0.05 0.03 0.05 0.04 0.05
    MgO 0.22 0.24 0.17 0.18 0.40 0.11 0.10 0.08 0.19
    CaO 0.43 0.59 0.34 0.47 1.09 0.81 0.81 0.28 0.60
    Na2O 3.03 4.32 5.20 2.87 4.33 3.29 5.51 5.28 4.23
    K2O 4.55 4.43 3.70 4.54 3.69 4.84 3.58 4.15 4.19
    P2O5 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
    LOI 1.96 2.18 1.52 1.86 2.37 1.87 1.58 0.78 1.76
    Total 99.95 99.95 99.96 99.95 99.96 99.96 99.96 99.96 99.96
    (Na2O+K2O)/CaO 17.79 14.89 26.00 15.79 7.38 10.09 11.22 33.96 17.14
    A/CNK 1.66 1.37 1.36 1.60 1.35 1.29 1.16 1.20 1.37
    Mg# 67.97 80.89 81.72 70.63 91.14 75.77 66.86 66.64 75.20
    La 7.85 5.67 2.69 8.89 6.63 9.51 9.69 7.03 7.25
    Ce 21.75 14.21 7.43 24.38 17.43 25.57 23.32 16.23 18.79
    Pr 2.43 1.66 0.81 2.87 2.16 2.46 2.17 1.75 2.04
    Nd 7.27 4.88 2.34 8.75 6.60 8.06 6.81 5.46 6.27
    Sm 2.20 1.24 0.67 2.50 1.90 2.28 1.96 1.43 1.77
    Eu 0.03 0.03 0.02 0.04 0.03 0.04 0.03 0.03 0.03
    Gd 1.91 1.07 0.56 2.07 1.53 1.85 1.71 1.16 1.48
    Tb 0.43 0.23 0.12 0.46 0.33 0.47 0.45 0.28 0.35
    Dy 3.09 1.68 0.87 3.26 2.50 2.91 2.93 1.80 2.38
    Ho 0.63 0.34 0.17 0.65 0.52 0.56 0.57 0.35 0.47
    Er 2.10 1.14 0.55 2.17 1.67 1.91 1.93 1.22 1.59
    Tm 0.45 0.25 0.12 0.47 0.36 0.39 0.41 0.28 0.34
    Yb 3.41 1.96 0.99 3.59 2.88 3.14 3.28 2.18 2.68
    Lu 0.52 0.30 0.15 0.54 0.43 0.45 0.47 0.33 0.40
    ∑REE 54.07 34.66 17.49 60.64 44.97 59.60 55.73 39.53 45.84
    LREE 41.53 27.69 13.96 47.43 34.75 47.92 43.98 31.93 36.15
    HREE 12.54 6.97 3.53 13.21 10.22 11.68 11.75 7.60 9.69
    LREE/HREE 3.31 3.97 3.95 3.59 3.40 4.10 3.74 4.20 3.78
    (La/Yb)N 1.65 2.08 1.96 1.78 1.65 2.17 2.12 2.31 1.97
    (La/Sm)N 2.30 2.94 2.59 2.30 2.25 2.70 3.19 3.18 2.68
    (Sm/Yb)N 0.72 0.71 0.76 0.77 0.73 0.80 0.66 0.73 0.74
    (Gd/Yb)N 0.46 0.45 0.47 0.48 0.44 0.49 0.43 0.44 0.46
    δEu 0.05 0.08 0.09 0.05 0.05 0.06 0.05 0.07 0.06
    δCe 1.21 1.12 1.22 1.18 1.12 1.26 1.20 1.10 1.18
    Rb 1701 1389 1164 1595 1392 1450 1481 1321 1437
    Ba 12.61 39.48 30.50 20.63 15.68 33.88 18.23 21.15 24.02
    Th 13.89 16.01 4.03 17.08 11.29 23.01 14.38 12.77 14.06
    U 1.56 1.11 0.61 1.74 1.25 1.73 1.99 1.44 1.43
    K 38546 37652 31185 38447 31364 40993 30182 34729 35387
    Ta 39.11 40.32 34.14 41.12 37.65 27.76 38.90 30.78 36.22
    Nb 63.72 59.70 55.30 68.08 67.34 44.38 73.08 53.71 60.66
    Sr 23.64 22.51 23.58 24.26 36.87 30.51 26.94 15.70 25.50
    P 40.76 29.81 27.45 41.80 34.14 41.54 39.31 34.67 36.19
    Zr 35.25 35.87 13.77 36.06 33.61 41.87 42.04 41.24 34.96
    Hf 5.41 4.07 2.27 4.80 4.39 4.65 4.03 3.64 4.16
    Ti 56.69 29.25 28.45 43.06 36.64 30.03 36.98 29.31 36.30
    Ga 48.64 46.19 44.78 43.27 46.02 28.51 41.63 39.08 42.27
    Y 16.01 10.06 4.50 16.86 13.87 15.83 16.50 9.31 12.87
    TE1,3 1.23 1.20 1.24 1.23 1.20 1.26 1.24 1.21 1.23
    下载: 导出CSV

    表 3 

    东七一山矿床花岗质杂岩锆石Hf同位素分析结果

    Table 3. 

    Hf isotopic data of zircon from the granitic complex in Dongqiyishan deposit

    测点号 Age 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ εHf(0) εHf(t) tDM1(Hf) tDM2(Hf) fLu/Hf
    (Ma) (Ma)
    QN1-01 217.7 0.05 0.001116 0.282703 0.000022 -2.43 2.20 780 937 -0.97
    QN1-03 216.3 0.09 0.001923 0.282693 0.000022 -2.78 1.69 811 961 -0.94
    QN1-05 218.2 0.05 0.001086 0.282645 0.000024 -4.49 0.14 862 1042 -0.97
    QN1-08 215.8 0.08 0.001772 0.282692 0.000023 -2.83 1.66 810 963 -0.95
    QN1-12 214.7 0.06 0.001376 0.282688 0.000020 -2.97 1.55 807 967 -0.96
    QN1-18 216.4 0.08 0.001718 0.282672 0.000023 -3.54 0.97 838 999 -0.95
    QN1-19 216.7 0.08 0.001945 0.282631 0.000037 -5.00 -0.52 902 1075 -0.94
    QN1-20 215.4 0.05 0.001178 0.282723 0.000018 -1.75 2.81 754 903 -0.96
    QN1-21 216.4 0.09 0.002144 0.282583 0.000033 -6.68 -2.24 976 1162 -0.94
    QN1-22 215 0.07 0.001438 0.282705 0.000022 -2.37 2.15 784 937 -0.96
    QN1-23 218.1 0.08 0.001723 0.282656 0.000019 -4.12 0.42 861 1028 -0.95
    QN1-24 220.4 0.10 0.001960 0.282664 0.000023 -3.82 0.74 854 1014 -0.94
    QN1-25 216 0.06 0.001323 0.282661 0.000025 -3.92 0.64 844 1015 -0.96
    QN1-27 219 0.09 0.002024 0.282681 0.000021 -3.21 1.31 831 983 -0.94
    QN2-02 223.7 0.16 0.003506 0.282538 0.000031 -8.26 -3.87 1081 1251 -0.89
    QN2-04 231.4 0.08 0.001692 0.282689 0.000027 -2.94 1.89 812 964 -0.95
    QN2-06 219.6 0.06 0.001241 0.282671 0.000024 -3.58 1.07 828 996 -0.96
    QN2-07 232.1 0.10 0.002020 0.282634 0.000022 -4.88 -0.09 899 1065 -0.94
    QN2-09 226 0.10 0.002296 0.282617 0.000031 -5.50 -0.87 932 1101 -0.93
    QN2-11 222.9 0.10 0.002292 0.282594 0.000027 -6.29 -1.73 964 1142 -0.93
    QN2-13 232.4 0.10 0.002034 0.282670 0.000024 -3.61 1.18 848 1001 -0.94
    QN2-19 229.6 0.12 0.002786 0.282626 0.000029 -5.15 -0.53 930 1086 -0.92
    QN2-21 227.5 0.07 0.001492 0.282618 0.000023 -5.44 -0.67 909 1091 -0.96
    QN2-23 225.7 0.11 0.002586 0.282516 0.000041 -9.05 -4.48 1086 1284 -0.92
    QN2-24 225.8 0.09 0.002026 0.282604 0.000042 -5.93 -1.28 943 1121 -0.94
    QN3-01 223.4 0.04 0.000797 0.282743 0.000025 -1.01 3.78 717 860 -0.98
    QN3-02 224.6 0.06 0.001216 0.282809 0.000025 1.29 6.05 632 745 -0.96
    QN3-03 224.4 0.11 0.002296 0.282661 0.000026 -3.93 0.66 867 1021 -0.93
    QN3-04 221.6 0.07 0.001613 0.282744 0.000023 -1.00 3.63 732 867 -0.95
    QN3-05 224.7 0.12 0.002490 0.282685 0.000029 -3.07 1.50 836 978 -0.93
    QN3-06 223.7 0.03 0.000739 0.282729 0.000022 -1.51 3.30 735 885 -0.98
    QN3-07 223.6 0.05 0.001071 0.282737 0.000023 -1.25 3.50 732 875 -0.97
    QN3-08 226.8 0.05 0.001011 0.282723 0.000023 -1.75 3.08 750 899 -0.97
    QN3-09 222.8 0.05 0.001065 0.282662 0.000022 -3.89 0.85 837 1010 -0.97
    QN3-10 223 0.06 0.001344 0.282711 0.000020 -2.17 2.53 774 924 -0.96
    QN3-12 222.2 0.04 0.000807 0.282732 0.000026 -1.41 3.36 733 881 -0.98
    QN3-13 224.1 0.04 0.000936 0.282702 0.000026 -2.49 2.29 779 937 -0.97
    QN3-15 218.7 0.05 0.001132 0.282785 0.000030 0.47 5.11 664 788 -0.97
    QN3-16 221.6 0.09 0.001919 0.282674 0.000027 -3.47 1.12 839 995 -0.94
    QN3-17 223.3 0.07 0.001426 0.282704 0.000026 -2.41 2.28 785 937 -0.96
    QN7-02 218.8 0.08 0.001768 0.282591 0.000024 -6.40 -1.86 955 1145 -0.95
    QN7-04 219.9 0.05 0.001101 0.282753 0.000022 -0.66 4.01 708 845 -0.97
    QN7-08 220.9 0.08 0.001772 0.282648 0.000021 -4.40 0.20 874 1042 -0.95
    QN7-13 228.8 0.12 0.002741 0.282632 0.000025 -4.97 -0.36 921 1076 -0.92
    QN7-16 214.5 0.15 0.003730 0.282518 0.000028 -8.99 -4.81 1119 1292 -0.89
    QN7-18 231.5 0.11 0.002473 0.282626 0.000021 -5.17 -0.46 923 1084 -0.93
    QN7-22 227.2 0.08 0.001983 0.282584 0.000021 -6.64 -1.95 971 1157 -0.94
    下载: 导出CSV

    表 4 

    东七一山钨多金属矿辉钼矿Re-Os同位素测年数据

    Table 4. 

    Re-Os isotopic data for molybdenite from the Dongqiyishan tungsten-polymetallic deposit

    样品号 样重 Re(×10-9) 187Re(×10-9) 187Os(×10-9) 模式年龄
    (g) 测定值 不确定度 测定值 不确定度 测定值 不确定度 测定值(Ma) 不确定度
    Qn-1 0.02036 147.5 1.1 92.70 0.68 0.325 0.002 210.3 2.1
    Qn-2 0.02045 117.2 0.9 73.65 0.54 0.258 0.002 210.0 2.2
    Qn-3 0.05023 120.0 1.7 75.45 1.10 0.266 0.002 210.9 4.0
    Qn-4 0.02028 468.5 3.5 294.5 2.2 1.044 0.008 212.5 2.2
    Qn-5 0.02045 128.9 1.0 81.02 0.60 0.286 0.003 211.4 2.6
    下载: 导出CSV
  •  

    Agangi A, Kamenetsky VS and McPhie J. 2010. The role of fluorine in the concentration and transport of lithophile trace elements in felsic magmas: Insights from the Gawler Range volcanics, South Australia. Chemical Geology, 273(3-4): 314-325 doi: 10.1016/j.chemgeo.2010.03.008

     

    Aksyuk AM. 2000. Estimation of fluorine concentrations in fluids of mineralized skarn systems. Economic Geology, 95(6): 1339-1347 doi: 10.2113/gsecongeo.95.6.1339

     

    Anderson T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59-79 doi: 10.1016/S0009-2541(02)00195-X

     

    Ballouard C, Poujol M, Boulvais P, Branquet Y, Tartèse R and Vigneresse JL. 2016. Nb-Ta fractionation in peraluminous granites: A marker of the magmatic-hydrothermal transition. Geology, 44(3): 231-234 doi: 10.1130/G37475.1

     

    Bolhar R, Weaver SD, Whitehouse MJ, Palin JM, Woodhead JD and Cole JW. 2008. Sources and evolution of arc magmas inferred from coupled O and Hf isotope systematics of plutonic zircons from the Cretaceous Separation Point Suite (New Zealand). Earth and Planetary Science Letters, 268(3-4): 312-324 doi: 10.1016/j.epsl.2008.01.022

     

    Boynton WV. 1984. Cosmochemistry of the rare earth elements: Meteorite studies. Developments in Geochemistry, 2: 63-114

     

    Cai KD, Sun M, Yuan C, Xiao WJ, Zhao GC, Long XP and Wu FY. 2012. Carboniferous mantle-derived felsic intrusion in the Chinese Altai, NW China: Implications for geodynamic change of the accretionary orogenic belt. Gondwana Research, 22(2): 681-698 doi: 10.1016/j.gr.2011.11.008

     

    Chang Z and Meinert LD. 2008. The Empire Cu-Zn mine, Idaho: Exploration implications of unusual skarn features related to high fluorine activity. Economic Geology, 103(5): 909-938 doi: 10.2113/gsecongeo.103.5.909

     

    Chappell BW and White AJR. 1992. I- and S-type granites in the Lachlan Fold Belt. Geological Society of America Special Papers, 272: 1-26

     

    Chappell BW, White AJR, Williams IS and Wyborn D. 2004. Low- and high-temperature granites. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 95(1-2): 125-140 doi: 10.1017/S0263593300000973

     

    Chen B, Ma XH and Wang ZQ. 2014. Origin of the fluorine-rich highly differentiated granites from the Qianlishan composite plutons (South China) and implications for polymetallic mineralization. Journal of Asian Earth Sciences, 93: 301-314 doi: 10.1016/j.jseaes.2014.07.022

     

    Chen S, Guo ZJ, Qi JF, Zhang YY, Pe-Piper G and Piper DJW. 2016. Early Permian volcano-sedimentary successions, Beishan, NW China: Peperites demonstrate an evolving rift basin. Journal of Volcanology and Geothermal Research, 309: 31-44 doi: 10.1016/j.jvolgeores.2015.11.004

     

    Deng XH, Chen YJ, Santosh M, Wang JB, Li C, Yue SW, Zheng Z, Chen HJ, Tang HS, Dong LH and Qu X. 2017. U-Pb zircon, Re-Os molybdenite geochronology and Rb-Sr geochemistry from the Xiaobaishitou W(-Mo) deposit: Implications for Triassic tectonic setting in eastern Tianshan, NW China. Ore Geology Review, 80: 332-351 doi: 10.1016/j.oregeorev.2016.05.013

     

    Ding JX, Han CM, Xiao WJ, Wang ZM and Yang XM. 2015. Geochemistry and U-Pb geochronology of tungsten deposit of Huaniushan island arc in the Beishan orogenic belt, and its geodynamic background. Acta Petrologica Sinica, 31(2): 594-616 (in Chinese with English abstract)

     

    Ding JX, Cheng YJ, Han CM, Xiao WJ, Deng XH and Wang ZM. 2019. The tungsten deposits in Beishan, Gansu Province, NW China: Geochronological framework, spatial distribution and tectonic implication. Chinese Journal of Geology, 54(4): 1349-1369 (in Chinese with English abstract)

     

    Dingwell DB, Knoche R and Webb SL. 1993. The effect of F on the density of haplogranite melt. American Mineralogist, 78(3-4): 325-330

     

    Du AD, Wu SQ, Sun DZ, Wang SX, Qu WJ, Markey R, Stain H, Morgan J and Malinovskiy D. 2004. Preparation and certification of Re-Os dating reference materials: Molybdenites HLP and JDC. Geostandards and Geoanalytical Research, 28(1): 41-52 doi: 10.1111/j.1751-908X.2004.tb01042.x

     

    Guo L, Wang GQ, Guo L and Bu T. 2018. Petrogenesis of Early Triassic felsic dikes in the Lucaogou area of southern Beishan orogenic belt. Bulletin of Mineralogy, Petrology and Geochemistry, 37(3): 502-512 (in Chinese with English abstract)

     

    He J, Xu XC, Xie QQ, Fan ZL and Chen TH. 2016. Evidence from pseudomorphous β-quartz phenocryst for decompression of rock-forming and ore-forming processes in Shapinggou porphyry Mo deposit. Science China (Earth Sciences), 59(5): 1014-1024 doi: 10.1007/s11430-015-5244-x

     

    Hu RZ, Wei WF, Bi XW, Peng JT, Qi YQ, Wu LY and Chen YW. 2012. Molybdenite Re-Os and muscovite 40Ar/39Ar dating of the Xihuashan tungsten deposit, central Nanling district, South China. Lithos, 150: 111-118 doi: 10.1016/j.lithos.2012.05.015

     

    Irber W. 1999. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochimica et Cosmochimica Acta, 63(3-4): 489-508 doi: 10.1016/S0016-7037(99)00027-7

     

    Jahn BM, Wu FY, Capdevila R, Martineau F, Zhao ZH and Wang YX. 2001. Highly evolved juvenile granites with tetrad REE patterns: The Woduhe and Baerzhe granites from the Great Xing'an Mountains in NE China. Lithos, 59(4): 171-198 doi: 10.1016/S0024-4937(01)00066-4

     

    Jiang SH and Nie FJ. 2006. 40Ar/39Ar geochronology of Hongjianbingshan tungsten deposit in Beishan Mountain, Gansu Province, China. Mineral Deposits, 25(1): 89-94 (in Chinese with English abstract) doi: 10.3969/j.issn.0258-7106.2006.01.011

     

    Kawabe I. 1999. Thermochemical parameters for solution of lanthanide (Ⅲ) ethylsulphate and trichloride hydrate series: Tetrad effects and hydration change in aqua Ln3+ ion series. Geochemical Journal, 33(4): 249-265 doi: 10.2343/geochemj.33.249

     

    Kemp AIS, Hawkesworth CJ, Foster GL, Paterson BA, Woodhead JD, Hergt JM, Gray CM and Whitehouse MJ. 2007. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science, 315(5814): 980-983 doi: 10.1126/science.1136154

     

    King PL, White AJR, Chappell BW and Allen CM. 1997. Characterization and origin of aluminous A-type granites from the Lachlan fold belt, southeastern Australia. Journal of Petrology, 38(3): 371-391 doi: 10.1093/petroj/38.3.371

     

    Lentz D. 1996. U, Mo and REE mineralization in late-tectonic granitic pegmatites, southwestern Grenville Province, Canada. Ore Geology Reviews, 11(4): 197-227 doi: 10.1016/0169-1368(95)00034-8

     

    Li M, Ren BF, Duan XL, Tian J, Duan LF and Niu WC. 2020. Petrogenesis of Triassic granites in Xiaohongshan area, Beishan orogenic belt: Constraints from zircon U-Pb ages and Hf isotopes. Geological Bulletin of China, 39(9): 1422-1435 (in Chinese with English abstract)

     

    Li S, Wang T, Wilde SA, Tong Y, Hong DW and Guo QQ. 2012. Geochronology, petrogenesis and tectonic implications of Triassic granitoids from Beishan, NW China. Lithos, 134-135: 123-145 doi: 10.1016/j.lithos.2011.12.005

     

    Li S. 2013. Triassic granitoids in Beishan-Inner Mongolia, China and its tectonic implications. Ph. D. Dissertation. Beijing: Chinese Academy of Geological Sciences (in Chinese with English abstract)

     

    Li SH, Li JK, Zhang DH and Wan GL. 2015. The evolution of ore-forming fluid and its constrain to the ore-forming process in Limu Ta-Nb-Sn polymetallic ore deposit, Guangxi, China. Acta Petrologica Sinica, 31(4): 954-966 (in Chinese with English abstract)

     

    Li XH, Li WX and Li ZX. 2007. On the genetic classification and tectonic implications of the Early Yanshanian granitoids in the Nanling Range, South China. Chinese Science Bulletin, 52(14): 1873-1885 doi: 10.1007/s11434-007-0259-0

     

    Liu CM. 2018. Analyses on the geological characteristics and exploration perspective of Shaquanzi Nb, Ta deposit, Hami. Master Degree Thesis. Xi'an: Chang'an University (in Chinese with English abstract)

     

    Liu JW, Chen B, Chen JS, Li Z and Sun KK. 2017. Highly differentiated granite from the Zhuxi tungsten (copper) deposit in northeastern Jiangxi Province: Petrogenesis and their relationship with W-mineralization. Acta Petrologica Sinica, 33(10): 3161-3182 (in Chinese with English abstract)

     

    Lü B, Yang YQ, Meng GX, Yan JY, Zhao JH, Wang SG, Jia LL and Peng RM. 2011. Geochemical characteristics and petrogenesis of Dongqiyishan alkali feldspar granite, Inner Mongolia. Acta Petrologica et Mineralogica, 30(3): 543-552 (in Chinese with English abstract) doi: 10.3969/j.issn.1000-6524.2011.03.017

     

    Maniar PD and Piccoli PM. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 635-643 doi: 2.3.CO;2" target="_blank">10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

     

    Manning DAC. 1981. The effect of fluorine on liquidus phase relationships in the system Qz-Ab-Or with excess water at 1kb. Contributions to Mineralogy and Petrology, 76(2): 206-215 doi: 10.1007/BF00371960

     

    Mao JW, Zhang ZC, Zhang ZH and Du AD. 1999. Re-Os isotopic dating of molybdenites in the Xiaoliugou W (Mo) deposit in the northern Qilian Mountains and its geological significance. Geochimica et Cosmochimica Acta, 63(11-12): 1815-1818 doi: 10.1016/S0016-7037(99)00165-9

     

    Mao JW, Ouyang HG, Song SW, Santosh M, Yuan SD, Zhou ZH, Zheng W, Liu H, Liu P, Cheng YB and Chen MH. 2019. Geology and metallogeny of tungsten and tin deposits in China. Economic Geology (Special Publications), 22: 411-482

     

    Mao JW, Liu P, Goldfarb RJ, Goryachev NA, Piranjno F, Zheng W, Zhou MF, Zhao C, Xie GQ, Yuan SD and Liu M. 2021a. Cretaceous large-scale metal accumulation triggered by post-subductional large-scale extension, East Asia. Ore Geology Reviews, 136: 104270 doi: 10.1016/j.oregeorev.2021.104270

     

    Mao JW, Zheng W, Xie GQ, Lehmann B and Goldfarb RJ. 2021b. Recognition of a Middle-Late Jurassic arc-related porphyry copper belt along the Southeast China Coast: Geological characteristics and metallogenic implications. Geology, 49(5): 592-596 doi: 10.1130/G48615.1

     

    McPhie J, Kamenetsky V, Allen S, Ehrig K, Agangi A and Bath A. 2011. The fluorine link between a supergiant ore deposit and a silicic large igneous province. Geology, 39(11): 1003-1006 doi: 10.1130/G32205.1

     

    Middlemost EAK. 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3-4): 215-224 doi: 10.1016/0012-8252(94)90029-9

     

    Miller CF, McDowell SM and Mapes RW. 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology, 31(6): 529-532 doi: 2.0.CO;2" target="_blank">10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2

     

    Mysen BO, Cody GD and Smith A. 2004. Solubility mechanisms of fluorine in peralkaline and meta-aluminous silicate glasses and in melts to magmatic temperatures. Geochimica et Cosmochimica Acta, 68(12): 2745-2769 doi: 10.1016/j.gca.2003.12.015

     

    Nie FJ, Jiang SH, Bai DM, Wang XL, Su XX, Li JC, Liu Y and Zhao SM. 2002a. Metallogenic Studies and Ore Prospecting in the Conjunction Area of Inner Mongolia Autonomous Region, Gansu Province and Xinjiang Uygur Autonomous Region (Beishan Mt. ), Northwest China. Beijing: Geological Publishing House, 1-480 (in Chinese)

     

    Nie FJ, Jiang SH and Liu Y. 2002b. Sm-Nd isotopic dating of fluorite separates from Dongqiyishan fluorite deposit, Alxa, western Inner Mongolia. Mineral Deposits, 21(1): 10-15 (in Chinese with English abstract)

     

    Nie FJ, Jiang SH, Hu P and Zhang Y. 2004. Geological features and ore-forming material sources of Hongjianbingshan tungsten deposit in Beishan Mountain, Gansu Province. Mineral Deposits, 23(1): 11-19 (in Chinese with English abstract) doi: 10.3969/j.issn.0258-7106.2004.01.002

     

    Nie FJ, Qu WJ, Liu Y, Du AD and Jiang SH. 2005. Re-Os isotopic age dating of molybdenite separates from Elegen porphyry Mo (Cu) mineralization area, northwestern Alxa, western Inner Mongolia. Mineral Deposits, 24(6): 638-646 (in Chinese with English abstract) doi: 10.3969/j.issn.0258-7106.2005.06.007

     

    Peccerillo A and Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81 doi: 10.1007/BF00384745

     

    Peng ZA, Li HH, Qu WJ, Zhang SQ, Ding HJ, Chen XR, Zhang B, Zhang YZ, Xu M and Cai MH. 2010. Molybdenite Re-Os age of Xiaohulishan molybdenum deposit in Beishan area, Inner Mongolia. Mineral Deposits, 29(3): 510-516 (in Chinese with English abstract) doi: 10.3969/j.issn.0258-7106.2010.03.012

     

    Pfänder JA, Münker C, Stracke A and Mezger K. 2007. Nb/Ta and Zr/Hf in ocean island basalts: Implications for crust-mantle differentiation and the fate of Niobium. Earth and Planetary Science Letters, 254(1-2): 158-172 doi: 10.1016/j.epsl.2006.11.027

     

    Pollard PJ. 1989. Geochemistry of granites associated with tantalum and niobium mineralization. In: Möller P, Černy P and Saupé F (eds. ). Lanthanides, Tantalum and Niobium. Berlin, Heidelberg: Springer, 145-168

     

    Ren YW. 1998. The evolutionary characteristics of the rare earth element (REE) and application in the geology. Henan Geology, 16(4): 303-308 (in Chinese with English abstract)

     

    Rudnick RL and Gao S. 2003. Composition of the continental crust. In: Rudnick RL (ed. ). Treatise on Geochemistry. Oxford: Pergamon, 3: 1-64

     

    Song DF, Xiao WJ, Han CM, Tian ZH and Wang ZM. 2013. Provenance of metasedimentary rocks from the Beishan Orogenic Collage, Southern Altaids: Constraints from detrital zircon U-Pb and Hf isotopic data. Gondwana Research, 24(3-4): 1127-1151 doi: 10.1016/j.gr.2013.02.002

     

    Streckeisen A. 1976. To each plutonic rock its proper name. Earth-Science Reviews, 12(1): 1-33 doi: 10.1016/0012-8252(76)90052-0

     

    Su BX, Qin KZ, Sakyi PA, Li XH, Yang YH, Sun H, Tang DM, Liu PP, Xiao QH and Malaviarachchi SPK. 2011. U-Pb ages and Hf-O isotopes of zircons from Late Paleozoic mafic-ultramafic units in the southern Central Asian Orogenic Belt: Tectonic implications and evidence for an Early-Permian mantle plume. Gondwana Research, 20(2-3): 516-531 doi: 10.1016/j.gr.2010.11.015

     

    Su HM and Jiang SY. 2017. A comparison study of tungsten-bearing granite and related mineralization in the northern Jiangxi-southern Anhui provinces and southern Jiangxi Province in South China. Science China (Earth Sciences), 60(11): 1942-1958 doi: 10.1007/s11430-016-9071-6

     

    Sun GS, Zhao TX, Jin RX and Wang QH. 2019. Zircon U-Pb chronology, geochemistry, and petrogenesis of the high Nb-Ta alkaline rhyolites at the Tuohe Tree Farm, northern volcanic belt, Great Xing'an Range, China. Canadian Journal of Earth Sciences, 56(10): 1003-1016 doi: 10.1139/cjes-2018-0332

     

    Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds. ). Magmatism in Oceanic Basins. Geological Society, London, Special Publications, 42(1): 313-345

     

    Sun YJ and Li DM. 2009. Mineralization pattern of Baixianishan tungsten in Gansu. Gansu Science and Technology, 25(12): 23-26 (in Chinese) doi: 10.3969/j.issn.1000-0952.2009.12.009

     

    Taylor HP and Sheppard SMF. 1986. Igneous rocks: I, Processes of isotopic fractionation and isotope systematics. Reviews in Mineralogy and Geochemistry, 16(1): 227-271

     

    Wang T, Zheng YD, Liu SW, Li TB and Ma MB. 2002. Mylonitic potassic granitoids from the Yagan metamorphic core complex on Sino-Mongolian border: A mark of transition from contractile to extensional tectonic regime. Acta Petrologica Sinica, 18(2): 177-186 (in Chinese with English abstract)

     

    Wang X, Chen J and Ren MH. 2016. Hydrothermal zircon geochronology: Age constraint on Nanling Range tungsten mineralization (Southeast China). Ore Geology Reviews, 74: 63-75 doi: 10.1016/j.oregeorev.2015.10.034

     

    Wang Y, Lü QT, Meng GX, Yan JY, Yang YQ and Zhao JH. 2009. Alkali feldspar granite of Dongqiyishan, Inner Mongolia and its metallogenesis. Acta Geologica Sinica, 83(10): 1505-1514 (in Chinese with English abstract) doi: 10.3321/j.issn:0001-5717.2009.10.015

     

    Watson EB and Harrison TM. 1984. Accessory minerals and the geochemical evolution of crustal magmatic systems: A summary and prospectus of experimental approaches. Physics of the Earth and Planetary Interiors, 35(1-3): 19-30 doi: 10.1016/0031-9201(84)90031-1

     

    Webster J, Thomas R, Förster HJ, Seltmann R and Tappen C. 2004. Geochemical evolution of halogen-enriched granite magmas and mineralizing fluids of the Zinnwald tin-tungsten mining district, Erzgebirge, Germany. Mineralium Deposita, 39(4): 452-472

     

    Wei OX. 2019. Research on the genesis of Xiaohulishan molybdenum polymetallic deposit in eastern Tianshan-Beishan area. Master Degree Thesis. Hefei: Heifei University of Technology (in Chinese with English abstract)

     

    Whalen JB, Currie KL and Chappell BW. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419 doi: 10.1007/BF00402202

     

    Windley BF, Alexeiev D, Xiao WJ, Kröner A and Badarch G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47 doi: 10.1144/0016-76492006-022

     

    Wood SA and Samson IM. 1998. Solubility of ore minerals and complexation of ore metals in hydrothermal solutions. Review Economic Geology, 10: 33-77

     

    Wu FY, Li XH, Yang JH and Zheng YF. 2007. Discussions on the petrogenesis of granites. Acta Petrologica Sinica, 23(6): 1217-1238 (in Chinese with English abstract) doi: 10.3969/j.issn.1000-0569.2007.06.001

     

    Wu FY, Liu XC, Ji WQ, Wang JM and Yang L. 2017. Highly fractionated granites: Recognition and research. Science China (Earth Sciences), 60(7): 1201-1219 doi: 10.1007/s11430-016-5139-1

     

    Wu G, Liu RL, Chen GZ, Li TG, Li RH, Li YL, Yang F and Zhang T. 2021. Mineralization of the Weilasituo rare metal-tin-polymetallic ore deposit in Inner Mongolia: Insights from fractional crystallization of granitic magmas. Acta Petrologica Sinica, 37(3): 637-664 (in Chinese with English abstract) doi: 10.18654/1000-0569/2021.03.01

     

    Wu YS, Chen YJ and Zhou KF. 2017. Mo deposits in Northwest China: Geology, geochemistry, geochronology and tectonic setting. Ore Geology Reviews, 81: 641-671 doi: 10.1016/j.oregeorev.2016.07.010

     

    Xiao WJ, Windley BF, Allen MB and Han CM. 2013. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage. Gondwana Research, 23(4): 1316-1341 doi: 10.1016/j.gr.2012.01.012

     

    Xue HM, Wang YG, Ma F, Wang C, Wang DE and Zuo YL. 2009. The Huangshan A-type granites with tetrad REE: Constraints on Mesozoic lithospheric thinning of the southeastern Yangtze craton? Acta Geologica Sinica, 83(2): 247-259 (in Chinese with English abstract) doi: 10.3321/j.issn:0001-5717.2009.02.010

     

    Yang HQ, Zhao GB, Li WM, Yang JG, Li Y, Wang XH, Jiang HB and Tan WJ. 2010. Formation age and source tracing of the tungsten-bearing granite belt in the Pantuoshan-Yingzuihongshan area, Inner Mongolia. Geology and Exploration, 46(3): 407-413 (in Chinese with English abstract)

     

    Yang SS. 2012. Characteristics of porphyry-type ore deposits and ore-forming system analysis in North Beishan area, Inner Mongolia. Ph. D. Dissertation. Beijing: China University of Geosciences (Beijing) (in Chinese with English abstract)

     

    Yang YQ, Zhao JH, Meng GX, Yan JY, Lü B, Wang SG, Jia LL and Han JG. 2013. Rock-forming and ore-forming ages as well as formation environments of porphyry molybdenum deposits in Beishan area, Inner Mongolia. Acta Geoscientica Sinica, 34(4): 401-412 (in Chinese with English abstract)

     

    Yang ZX, Zhao JC, Jing DL, Zhao QH, Zhang J and Fan XX. 2021. Chronological and geochemical characteristics of the porphyritic granodiorite in the Qianhongquan area, Beishan region, Gansu Province, China and their tectonic significances. Bulletin of Mineralogy, Petrology and Geochemistry, 40(1): 228-241 (in Chinese with English abstract)

     

    Yin XM. 2008. Mesozoic tectonics, granite and mineralization in Beishan area of Gansu Province. Gansu Geology, 17(1): 1-6 (in Chinese with English abstract)

     

    Yuan SD, Peng JT, Hu RZ, Li HM, Shen NP and Zhang DL. 2008. A precise U-Pb age on cassiterite from the Xianghualing tin-polymetallic deposit (Hunan, south China). Mineralium Deposita, 43(4): 375-382 doi: 10.1007/s00126-007-0166-y

     

    Yuan SD, Peng JT, Hao S, Li HM, Geng JZ and Zhang DL. 2011. In situ LA-MC-ICP-MS and ID-TIMS U-Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province, South China: New constraints on the timing of tin-polymetallic mineralization. Ore Geology Reviews, 43(1): 235-242 doi: 10.1016/j.oregeorev.2011.08.002

     

    Yuan SD, Williams-Jones AE, Mao JW, Zhao PL, Yan C and Zhang DL. 2018. The origin of the Zhangjialong tungsten deposit, south China: Implications for W-Sn mineralization in large granite batholiths. Economic Geology, 113(5): 1193-1208 doi: 10.5382/econgeo.2018.4587

     

    Yuan SD, Williams-Jones AE, Romer RL, Zhao PL and Mao JW. 2019. Protolith-related thermal controls on the decoupling of Sn and W in Sn-W metallogenic provinces: Insights from the Nanling Region, China. Economic Geology, 114(5): 1005-1012 doi: 10.5382/econgeo.4669

     

    Yuan SD, Zhao PL and Liu M. 2020. Some problems involving in petrogenesis and metallogenesis of granite-related tin deposits. Mineral Deposits, 39(4): 607-618 (in Chinese with English abstract)

     

    Yuan SD and Zhao PL. 2021. New synthetic fluid inclusion method to investigate partition behavior of ore metals between melt and fluid phases. Scientia Sinica Terrae, 51(2): 241-249 (in Chinese) doi: 10.1360/SSTe-2020-0131

     

    Zhai YS and Wang JP. 2011. A historical view of mineral deposit research. Acta Geologica Sinica, 85(5): 603-611 (in Chinese with English abstract)

     

    Zhang DY, Zhou TF, Yuan F, Xiao WJ, White NC, Deng YF, Lu WW and Deng G. 2015. Petrogenesis and mineralization potential of a granite porphyry intrusion beneath the Baishan Mo deposit, Eastern Tianshan, NW China. Journal of Asian Earth Sciences, 113: 254-265 doi: 10.1016/j.jseaes.2015.05.002

     

    Zhang GZ, Zhang Y, Xin HT, Huang C, Niu WC, Duan LF, Zhao ZL and Ren BF. 2021. Geochronology and geochemistry of diorite porphyrite from Laodonggou gold-polymetallic deposit, Beishan, Inner Mongolia, and its metallogenic significance. Mineral Deposits, 40(3): 555-573 (in Chinese with English abstract)

     

    Zhang YL, Xu RK, Shan L, Jia QZ, Song ZB, Chen XY, Zhang XF, Chen B, Li YZ and Quan SC. 2012. Rock-forming and ore-forming ages of the Xiaohulishan molybdenum deposit in Beishan area, Inner Mongolia. Geological Bulletin of China, 31(2-3): 469-475 (in Chinese with English abstract)

     

    Zhao PL, Yuan SD, Mao JW, Santosh M, Li C and Hou KJ. 2016. Geochronological and petrogeochemical constraints on the skarn deposits in Tongshanling ore district, southern Hunan Province: Implications for Jurassic Cu and W metallogenic events in South China. Ore Geology Reviews, 79: 120-137

     

    Zhao PL, Yuan SD, Mao JW, Yuan YB, Zhao HJ, Zhang DL and Shuang Y. 2018. Constraints on the timing and genetic link of the large-scale accumulation of proximal W-Sn-Mo-Bi and distal Pb-Zn-Ag mineralization of the world-class Dongpo orefield, Nanling Range, South China. Ore Geology Reviews, 95: 1140-1160 doi: 10.1016/j.oregeorev.2017.12.005

     

    Zhao PL, Zhao HJ, Yuan SD and Mao JW. 2019. The Early Jurassic Fe-Sn metallogenic event and its geodynamic setting in South China: Evidence from Re-Os, U-Pb geochronology and geochemistry of the Dading magnesian skarn Fe-Sn deposit. Ore Geology Reviews, 111: 102970 doi: 10.1016/j.oregeorev.2019.102970

     

    Zhao PL, Chu X, Williams-Jones AE, Mao JW and Yuan SD. 2022a. The role of phyllosilicate partial melting in segregating tungsten and tin deposits in W-Sn metallogenic provinces. Geology, 50(1): 121-125 doi: 10.1130/G49248.1

     

    Zhao PL, Yuan SD, Williams-Jones AE, Romer RL, Yan C, Song SW and Mao JW. 2022b. Temporal separation of W and Sn mineralization by temperature-controlled incongruent melting of a single protolith: Evidence from the Wangxianling area, Nanling region, South China. Economic Geology, 117(3): 667-682 doi: 10.5382/econgeo.4902

     

    Zhao PL, Zajacz Z, Tsay A and Yuan SD. 2022c. Magmatic-hydrothermal tin deposits form in response to efficient tin extraction upon magma degassing. Geochimica et Cosmochimica Acta, 316: 331-346 doi: 10.1016/j.gca.2021.09.011

     

    Zhao PL, Zajacz Z, Tsay A, Chu X, Cheng QM and Yuan SD. 2022d. The partitioning behavior of Mo during magmatic fluid exsolution and its implications for Mo mineralization. Geochimica et Cosmochimica Acta, 339: 115-126 doi: 10.1016/j.gca.2022.10.020

     

    Zheng YF, Zhang SB, Zhao ZF, Wu YB, Li XH, Li ZX and Wu FY. 2007. Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China: Implications for growth and reworking of continental crust. Lithos, 96(1-2): 127-150 doi: 10.1016/j.lithos.2006.10.003

     

    Zheng YF, Chen RX and Zhao ZF. 2009. Chemical geodynamics of continental subduction-zone metamorphism: Insights from studies of the Chinese Continental Scientific Drilling (CCSD) core samples. Tectonophysics, 475(2): 327-358 doi: 10.1016/j.tecto.2008.09.014

     

    Zhu DC, Mo XX, Wang LQ, Zhao ZD, Niu HL, Zhou CY and Yang YH. 2009. Petrogenesis of highly fractionated I-type granites in the Zayu area of eastern Gangdese, Tibet: Constraints from zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopes. Science China (Series D), 52(9): 1223-1239 doi: 10.1007/s11430-009-0132-x

     

    Zhu J. 2013. Tectono-magmatic formation and gold-polymetallic mineralization in South Beishan area, NW China. Ph. D. Dissertation. Wuhan: China University of Geosciences (Wuhan) (in Chinese with English abstract)

     

    Zuo GC, He GQ, Zhang Y, Li HC, Bai WC, Zhou GQ, Zhang SL and Wang X. 1990. Plate Tectonics and Metallogenic Regularities in Beishan Region. Beijing: Peking University Publishing House, 1-209 (in Chinese)

     

    丁嘉鑫, 韩春明, 肖文交, 王忠梅, 杨晓梅. 2015. 北山造山带花牛山岛弧东段钨矿床成矿时代和成矿动力学过程. 岩石学报, 31(2): 594-616 http://www.ysxb.ac.cn/article/id/aps_20150222

     

    丁嘉鑫, 陈衍景, 韩春明, 肖文交, 邓小华, 王忠梅. 2019. 甘肃北山钨矿床时空分布、矿床类型及成矿动力学背景. 地质科学, 54(4): 1349-1369

     

    过磊, 王国强, 郭琳, 卜涛. 2018. 北山造山带南部芦草沟地区早三叠世酸性脉岩成因. 矿物岩石地球化学通报, 37(3): 502-512 https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201803012.htm

     

    江思宏, 聂凤军. 2006. 甘肃北山红尖兵山钨矿床的40Ar/39Ar同位素年代学研究. 矿床地质, 25(1): 89-94 doi: 10.3969/j.issn.0258-7106.2006.01.011

     

    李敏, 任邦方, 段霄龙, 田健, 段连峰, 牛文超. 2020. 内蒙古北山造山带小红山地区三叠纪花岗岩成因——来自锆石U-Pb年龄和Hf同位素的约束. 地质通报, 39(9): 1422-1435 https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202009008.htm

     

    李舢. 2013. 北山-内蒙古地区三叠纪花岗岩及其构造意义. 博士学位论文. 北京: 中国地质科学院

     

    李胜虎, 李建康, 张德会, 万贵龙. 2015. 广西栗木钽铌锡多金属矿床的成矿流体演化及其对成矿过程的制约. 岩石学报, 31(4): 954-966 http://www.ysxb.ac.cn/article/id/aps_20150405

     

    刘春明. 2018. 哈密沙泉子铌钽矿地质特征及找矿远景分析. 硕士学位论文. 西安: 长安大学

     

    刘经纬, 陈斌, 陈军胜, 李壮, 孙克克. 2017. 赣东北朱溪钨(铜)矿区高分异花岗岩的成因及与钨矿的关系. 岩石学报, 33(10): 3161-3182 http://www.ysxb.ac.cn/article/id/5ff2da34bfedb51e1a6ae3c2

     

    吕博, 杨岳清, 孟贵祥, 严加永, 赵金花, 王守光, 贾玲珑, 彭润民. 2011. 内蒙古东七一山碱长花岗岩的地球化学特征和成因. 岩石矿物学杂志, 30(3): 543-552 doi: 10.3969/j.issn.1000-6524.2011.03.017

     

    聂凤军, 江思宏, 白大明, 王新亮, 苏新旭, 李景春, 刘妍, 赵省民. 2002a. 北山地区金属矿床成矿规律及找矿方向. 北京: 地质出版社, 1-480 https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS606.004.htm

     

    聂凤军, 江思宏, 刘妍, 林源贤. 2002b. 阿拉善东七一山大型萤石矿床萤石钐-钕同位素年龄及地质意义. 矿床地质, 21(1): 10-15 https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200201002.htm

     

    聂凤军, 江思宏, 胡朋, 张义. 2004. 甘肃北山红尖兵山钨矿床地质特征及成矿物质来源. 矿床地质, 23(1): 11-19 doi: 10.3969/j.issn.0258-7106.2004.01.002

     

    聂凤军, 屈文俊, 刘妍, 杜安道, 江思宏. 2005. 内蒙古额勒根斑岩型钼(铜)矿化区辉钼矿铼-锇同位素年龄及地质意义. 矿床地质, 24(6): 638-646 doi: 10.3969/j.issn.0258-7106.2005.06.007

     

    彭振安, 李红红, 屈文俊, 张诗启, 丁海军, 陈晓日, 张斌, 张永正, 徐明, 蔡明海. 2010. 内蒙古北山地区小狐狸山钼矿床辉钼矿Re-Os同位素年龄及其地质意义. 矿床地质, 29(3): 510-516 doi: 10.3969/j.issn.0258-7106.2010.03.012

     

    任耀武. 1998. 稀土元素演化特征及应用. 河南地质, 16(4): 303-308 https://www.cnki.com.cn/Article/CJFDTOTAL-HNDD804.009.htm

     

    苏慧敏, 蒋少涌. 2017. 赣南和赣北-皖南钨成矿带含钨花岗岩及其成矿作用特征对比研究. 中国科学(地球科学), 47(11): 1292-1308 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201711003.htm

     

    孙永君, 李大民. 2009. 甘肃白峡尼山钨矿床成矿模式. 甘肃科技, 25(12): 23-26 doi: 10.3969/j.issn.1000-0952.2009.12.009

     

    王涛, 郑亚东, 刘树文, 李天斌, 马铭波. 2002. 中蒙边界亚干变质核杂岩糜棱状钾质花岗岩——早中生代收缩与伸展构造体制的转换标志. 岩石学报, 18(2): 177-186 http://www.ysxb.ac.cn/article/id/aps_20020220

     

    王勇, 吕庆田, 孟贵祥, 严加永, 杨岳清, 赵金花. 2009. 内蒙东七一山碱长花岗岩及其成矿作用. 地质学报, 83(10): 1505-1514 doi: 10.3321/j.issn:0001-5717.2009.10.015

     

    位鸥祥. 2019. 东天山-北山地区小狐狸山钼多金属矿床的成因研究. 硕士学位论文. 合肥: 合肥工业大学

     

    吴福元, 李献华, 杨进辉, 郑永飞. 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238 doi: 10.3969/j.issn.1000-0569.2007.06.001 http://www.ysxb.ac.cn/article/id/aps_200706118

     

    吴福元, 刘小驰, 纪伟强, 王佳敏, 杨类. 2017. 高分异花岗岩的识别与研究. 中国科学(地球科学), 47(7): 745-765 https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202201006.htm

     

    武广, 刘瑞麟, 陈公正, 李铁刚, 李睿华, 李英雷, 杨飞, 张彤. 2021. 内蒙古维拉斯托稀有金属-锡多金属矿床的成矿作用: 来自花岗质岩浆结晶分异的启示. 岩石学报, 37(3): 637-664 http://www.ysxb.ac.cn/article/doi/10.18654/1000-0569/2021.03.01

     

    薛怀民, 汪应庚, 马芳, 汪诚, 王德恩, 左延龙. 2009. 高度演化的黄山A型花岗岩: 对扬子克拉通东南部中生代岩石圈减薄的约束? 地质学报, 83(2): 247-259 https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200902011.htm

     

    杨合群, 赵国斌, 李文明, 杨建国, 李英, 王小红, 姜寒冰, 谭文娟. 2010. 内蒙古盘陀山-鹰嘴红山含钨花岗岩带形成时代及源区示踪. 地质与勘探, 46(3): 407-413 https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201003006.htm

     

    杨帅师. 2012. 内蒙古北山北带斑岩型矿床特征与成矿系统分析. 博士学位论文. 北京: 中国地质大学(北京)

     

    杨岳清, 赵金花, 孟贵祥, 严加永, 吕博, 王守光, 贾玲珑, 韩建刚. 2013. 内蒙古北山地区斑岩型钼矿的成岩成矿时代和形成环境探讨. 地球学报, 34(4): 401-412 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201304004.htm

     

    杨镇熙, 赵吉昌, 荆德龙, 赵青虎, 张晶, 樊新祥. 2021. 甘肃北山前红泉地区斑状花岗闪长岩年代学、地球化学特征及其构造意义. 矿物岩石地球化学通报, 40(1): 228-241 https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202101022.htm

     

    殷先明. 2008. 甘肃省北山地区中生代构造花岗岩侵入及成矿作用. 甘肃地质, 12(1): 1-6 https://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ200801003.htm

     

    袁顺达, 赵盼捞, 刘敏. 2020. 与花岗岩有关锡矿成岩成矿作用研究若干问题讨论. 矿床地质, 39(4): 607-618 https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202004006.htm

     

    袁顺达, 赵盼捞. 2021. 基于新的合成流体包裹体方法对成矿金属在熔体-流体相间分配行为的实验研究. 中国科学(地球科学), 51(2): 241-249 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202102005.htm

     

    翟裕生, 王建平. 2011. 矿床学研究的历史观. 地质学报, 85(5): 603-611 https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201105003.htm

     

    张国震, 张永, 辛后田, 黄成, 牛文超, 段连峰, 赵泽霖, 任邦方. 2021. 内蒙古北山老硐沟金多金属矿床闪长玢岩年代学、地球化学及其成矿意义. 矿床地质, 40(3): 555-573 https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202103010.htm

     

    张雨莲, 许荣科, 陕亮, 贾群子, 宋忠宝, 陈向阳, 张晓飞, 陈博, 栗亚芝, 全守村. 2012. 内蒙古北山地区小狐狸山钼矿辉钼矿Re-Os年龄和LA-ICP-MS锆石U-Pb年龄. 地质通报, 31(2-3): 469-475 https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2012Z1032.htm

     

    朱弟成, 莫宣学, 王立全, 赵志丹, 牛耀龄, 周长勇, 杨岳衡. 2009. 西藏冈底斯东部察隅高分异I型花岗岩的成因: 锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素约束. 中国科学(D辑), 39(7): 833-848 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200907001.htm

     

    朱江. 2013. 北山造山带南带构造-岩浆建造与金多金属成矿. 博士学位论文. 武汉: 中国地质大学(武汉)

     

    左国朝, 何国琦, 张扬, 李红诚, 白万成, 周国庆, 张淑玲, 王谐. 1990. 北山板块构造及成矿规律. 北京: 北京大学出版, 1-209

  • 加载中

(15)

(4)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2022-09-26
修回日期:  2023-01-17
刊出日期:  2023-06-01

目录