[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Logo des Repositoriums
 
Konferenzbeitrag

Priors for Linear Differential Equations

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2019

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

We algorithmically construct multi-output Gaussian process priors which satisfy linear differential equations. We parametrize all solutions of the differential equations using Gröbner bases for controllable systems. If successful, a push forward along the parametrization is the desired prior. This prior yields an interpretable machine learning model, which can combine linear differential equations with noisy data points.

Beschreibung

Lange-Hegermann, Markus (2019): Priors for Linear Differential Equations. INFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft. DOI: 10.18420/inf2019_38. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-688-6. pp. 269-270. Data Science. Kassel. 23.-26. September 2019

Zitierform

Tags