[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Factores ambientales en la transmisión del SARS-CoV-2/COVID 19: panorama mundial y colombiano
PDF

Archivos suplementarios

ANEXO PDF

Palabras clave

SARS-CoV-2/COVID-19, ambiente, factores meteorológicos, morbilidad, mortalidad.

Cómo citar

Pastor-Sierra, K. S., Peñata-Taborda, A., Coneo-Pretelt, A., Jiménez-Vidal, L., Arteaga-Arroyo, G., Ricardo Caldera, D., Salcedo-Arteaga, S., Galeano-Páez, C., Espitia-Pérez, P., & Espitia-Pérez, L. (2021). Factores ambientales en la transmisión del SARS-CoV-2/COVID 19: panorama mundial y colombiano. Salud UIS, 53. https://doi.org/10.18273/saluduis.53.e:21037

Resumen

Introducción: diversas investigaciones han intentado establecer el impacto de algunos parámetros meteorológicos y de calidad del medio ambiente en la transmisión del SARS-CoV-2, tomando en consideración las características geográficas de cada país y con el fin de mitigar el avance de la enfermedad mediante el control de esos factores. Objetivo: analizar la evidencia existente sobre la posible relación entre factores ambientales y la morbilidad y mortalidad por SARS-CoV-2/COVID-19 en el panorama mundial y colombiano. Metodología: se realizó una revisión exhaustiva de la literatura científica en las bases de datos electrónicas. Además, se analizó el impacto de algunas variables ambientales y la gravedad de los casos de COVID-19 durante el período del 8 de abril al 29 de julio de 2020 en la ciudad Bogotá. Resultados: el análisis correlacional entre la ocupación de camas UCIs en Bogotá con los factores ambientales como temperatura, las concentraciones de PM2.5, O3, NO, NO2 y CO mostraron una relación inversamente significativa. Entre tanto, se presentó una correlación positiva entre los niveles de óxidos de nitrógeno (NO/NO2) y el monóxido de carbono (CO). Algunos de estos resultados posiblemente están relacionados con los efectos de la cuarentena impuesta por el gobierno local. Conclusión: a nivel mundial existe suficiente evidencia para relacionar algunas condiciones y parámetros ambientales con un aumento en la morbilidad y mortalidad por COVID-19. Las evidencias a nivel nacional aún son escasas.

https://doi.org/10.18273/saluduis.53.e:21037
PDF

Referencias

Wu F, Zhao S, Chen YM, Wang W, Song ZG, Hu Y, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020; 579(7798): 265-269. doi: https://doi.org/10.1038/s41586-020-2008-3

Méndez-Arriaga F. The temperature and regional climate effects on communitarian COVID-19 contagion in Mexico throughout phase 1. Sci Total Environ. 2020; 735: 139560-139560. doi: https://doi.org/10.1016/j.scitotenv.2020.139560

Rohit A, Rajasekaran S, Karunasagar I, Karunasagar I. Fate of respiratory droplets in tropical vs temperate environments and implications for SARS-CoV-2 transmission. Med Hypotheses. 2020; 144: 109958. doi: https://doi.org/10.1016/j.mehy.2020.109958

Runkle JD, Sugg MM, Leeper RD, Rao Y, Matthews JL, Rennie JJ. Short-term effects of specific humidity and temperature on COVID-19 morbidity in select US cities. Sci Total Environ. 2020; 740: 140093. doi: https://doi.org/10.1016/j.scitotenv.2020.140093

Shahzad F, Shahzad U, Fareed Z, Iqbal N, Hashmi SH, Ahmad F. Asymmetric nexus between temperature and COVID-19 in the top ten affected provinces of China: A current application of quantile-on-quantile approach. Sci Total Environ. 2020; 736: 139115. doi: https://doi.org/10.1016/j.scitotenv.2020.139115

Yuan S, Jiang SC, Li ZL. Do Humidity and temperature impact the spread of the novel Coronavirus? Frontiers in public health. 2020; 8: 240-240. doi: https://doi.org/10.3389/fpubh.2020.00240

Scafetta, N. Distribution of the SARS-CoV-2 Pandemic and its monthly forecast based on seasonal climate patterns. Int J Environ Res Public Health. 2020; 17(10): 3493. doi: https://doi.org/10.3390/ijerph17103493

Shi P, Dong Y, Yan H, Zhao C, Li X, Liu W, et al. Impact of temperature on the dynamics of the COVID-19 outbreak in China. Sci Total Environ. 2020; 728: 138890-138890. doi: https://doi.org/10.1016/j.scitotenv.2020.138890

Ahmed W, Angel N, Edson J, Bibby K, Bivins A, O’Brien JW, et al. First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community. Sci Total Environ. 2020; 728: 138764-138764. doi: https://doi.org/10.1016/j.scitotenv.2020.138764

Correa Ayram CA, Etter A, Díaz-Timoté J, Rodríguez Buriticá S, Ramírez W, Corzo G. Spatiotemporal evaluation of the human footprint in Colombia: Four decades of anthropic impact in highly biodiverse ecosystems. Eco Indicators. 2020; 117: 106630. doi: https://doi.org/10.1016/j.ecolind.2020.106630

Lal P, Kumar A, Kumar S, Kumari S, Saikia P, Dayanandan A, et al. The dark cloud with a silver lining: Assessing the impact of the SARS COVID-19 pandemic on the global environment. Sci Total Environ. 2020; 732: 139297. doi: https://doi.org/10.1016/j.scitotenv.2020.139297

Liu, J, Zhou J, Yao J, Zhang X, Li L, Xu X, et al. Impact of meteorological factors on the COVID-19 transmission: A multi-city study in China. Sci Total Environ. 2020; 726: 138513. doi: https://doi.org/10.1016/j.scitotenv.2020.138513

Bhowmick GD, Dhar D, Nath D, Ghangrekar MM, Banerjee R, Das S, et al. Coronavirus disease 2019 (COVID-19) outbreak: some serious consequences with urban and rural water cycle. npj Clean Water. 2020; 3(1): 32-32. doi: https://doi.org/10.1038/s41545-020-0079-1

Bontempi E. Commercial exchanges instead of air pollution as possible origin of COVID-19 initial diffusion phase in Italy: More efforts are necessary to address interdisciplinary research. Environ Res. 2020; 188: 109775-109775. doi: https://doi.org/10.1016/j.envres.2020.109775

Chen Y, Chen L, Deng Q, Zhang G, Wu K, Ni L, et al. The presence of SARS‐CoV‐2 RNA in the feces of COVID‐19 patients. J Med Virol. 2020; 92(7): 833-840. doi: https://doi.org/10.1002/jmv.25825

Ahmadi M, Sharifi A, Dorosti S, Ghoushchi SJ, Ghanbari N. Investigation of effective climatology parameters on COVID-19 outbreak in Iran. Sci Total Environ. 2020; 729: 138705-138705. doi: https://doi.org/10.1016/j.scitotenv.2020.138705

Chien LC, Chen LW. Meteorological impacts on the incidence of COVID-19 in the U.S. Stoch Environ Res Risk Assess. 2020; 34: 1675-1680. doi: https://doi.org/10.1007/s00477-020-01835-8

Coro G. A global-scale ecological niche model to predict SARS-CoV-2 coronavirus infection rate. Ecol Modell. 2020; 431: 109187-109187. doi: https://doi.org/10.1016/j.ecolmodel.2020.109187

de Ángel Solá DE, Wang L, Vázquez M, Méndez-Lázaro PA. Weathering the pandemic: How the Caribbean Basin can use viral and environmental patterns to predict, prepare, and respond to COVID‐19. J Med Virol. 2020: 1460-1468. doi: https://doi.org/10.1002/jmv.25864

Del Rio C,Camacho-Ortiz A. Will environmental changes in temperature affect the course of COVID-19? The Braz J Infect Dis. 2020; 24(3): 261-263. doi: https://doi.org/10.1016/j.bjid.2020.04.007

Demongeot J, Flet-Berliac Y, Seligmann H.Temperature decreases spread parameters of the new Covid-19 case dynamics. Biology. 2020; 9(5): 94-94. doi: https://doi.org/103390/biology9050094

Harmooshi NN, Shirbandi K, Rahim F. Environmental concern regarding the effect of humidity and temperature on 2019-nCoV survival: fact or fiction. Environ Sci Poll Res Int. 2020; 27(29): 36027-36036. doi: https://doi.org/10.1007/s11356-020-09733-w

Holtmann M, Jones M, Shah A, Holtmann G. Low ambient temperatures are associated with more rapid spread of COVID-19 in the early phase of the endemic. Environ Res. 2020; 186: 109625. doi: https://doi.org/10.1016/j.envres.2020.109625

Huang Z, Huang J, Gu Q, Du P, Liang H, Dong Q. Optimal temperature zone for the dispersal of COVID-19. Science of the Total Environment. 2020; 736: 139487. doi: https://doi.org/10.1016/j.scitotenv.2020.139487

Suhaimi NF, Jalaludin J, Latif MT. Demystifying a possible relationship between COVID-19, air quality and meteorological factors: evidence from Kuala Lumpur, Malaysia. Aerosol Air Quality Res. 2020; 1520-1529. doi: https://doi.org/10.4209/aaqr.2020.05.0218

Tobías A, Molina T. Is temperature reducing the transmission of COVID-19? Environ Res. 2020; 186: 109553. doi: https://doi.org/10.1016/j.envres.2020.109553

Tosepu R, Gunawan J, Effendy DS, Imran Ahmad LOA, Lestari H, Bahar H, et al. Correlation between weather and Covid-19 pandemic in Jakarta, Indonesia. Sci Total Environ. 2020; 725: 138436. doi: https://doi.org/10.1016/j.scitotenv.2020.138436

Menebo MM. Temperature and precipitation associate with Covid-19 new daily cases: A correlation study between weather and Covid-19 pandemic in Oslo, Norway. Sci Total Environ. 2020; 737: 139659. doi: https://doi.org/10.1016/j.scitotenv.2020.139659

Briz-Redón Á, Serrano-Aroca Á. A spatiotemporal analysis for exploring the effect of temperature on COVID-19 early evolution in Spain. Sci Total Environ. 2020; 728: 138811. doi: https://doi.org/10.1016/j.scitotenv.2020.138811

Byass P. Eco-epidemiological assessment of the COVID-19 epidemic in China, January–February 2020. Glob Health Action. 2020; 13(1): 1760490-1760490. doi: https://doi.org/10.1080/16549716.2020.1760490

Goswami K, Bharali S, Hazarika J. Projections for COVID-19 pandemic in India and effect of temperature and humidity. Diabetes Metab Syndr. 2020; 14(5): 801-805. doi: https://doi.org/10.1016/j.dsx.2020.05.045

Jahangiri M, Jahangiri M, Najafgholipourb M. The sensitivity and specificity analyses of ambient temperature and population size on the transmission rate of the novel coronavirus (COVID-19) in different provinces of Iran. Sci Total Environ. 2020; 728: 138872. doi: https://doi.org/10.1016/j.scitotenv.2020.138872

Kumar M, Taki K, Gahlot R, Sharma A, Dhangar K. A chronicle of SARS-CoV-2: Part-I - Epidemiology, diagnosis, prognosis, transmission and treatment. Sci Total Environ. 2020; 734: 139278. doi: https://doi.org/10.1016/j.scitotenv.2020.139278

Xie J, Zhu Y. Association between ambient temperature and COVID-19 infection in 122 cities from China. Science of the Total Environment. 2020; 724: 138201. doi: https://doi.org/10.1016/j.scitotenv.2020.138201

Yao Y, Pan J, Liu Z, Meng X, Wang W, Kan H, et al. No association of COVID-19 transmission with temperature or UV radiation in Chinese cities. Eur Respir J. 2020; 55. doi: https://doi.org/10.1183/13993003.00517-2020

Feng Y, Marchal T, Sperry T, Yi H. Influence of wind and relative humidity on the social distancing effectiveness to prevent COVID-19 airborne transmission: A numerical study. J Aerosol Sci. 2020; 147: 105585. doi: https://doi.org/10.1016/j.jaerosci.2020.105585

Iqbal N, Fareed Z, Shahzad F, He X, Shahzad U, Lina M. The nexus between COVID-19, temperature and exchange rate in Wuhan city: New findings from partial and multiple wavelet coherence. Sci Total Environ. 2020; 729: 138916. doi: https://doi.org/10.1016/j.scitotenv.2020.138916

Benedetti F, Pachetti M, Marini B, Ippodrino R, Gallo RC, Ciccozzi M, et al. Inverse correlation between average monthly high temperatures and COVID-19-related death rates in different geographical areas. J Transl Med. 2020; 18: 251. doi: https://doi.org/10.21203/rs.3.rs-29039/v1

Cimolai N. Environmental and decontamination issues for human coronaviruses and their potential surrogates. J Med Virol. 2020; 92(11): 2498-2510. doi: https://doi.org/10.1002/jmv.26170

Pirouz B, Haghshenas SS, Pirouz B, Haghshenas SS, Piro P. Development of an assessment method for investigating the impact of climate and urban parameters in confirmed cases of COVID-19: A New Challenge in Sustainable Development. Int J Environ Res Public Health. 2020; 17(8): 2801. doi: https://doi.org/10.3390/ijerph17082801

Rosario DKA, Mutz YS, Bernardes PC, Conte-Junior C. Relationship between COVID-19 and weather: Case study in a tropical country. Int J Environ Res Public Health. 2020; 229: 113587-113587. doi: https://doi.org/10.1016/j.ijheh.2020.113587

Sajadi MM, Habibzadeh P, Vintzileos A, Shokouhi S, Miralles-Wilhelm F, Amoroso A. Temperature, humidity, and latitude analysis to estimate potential spread and seasonality of coronavirus disease 2019 (COVID-19). JAMA Netw Open. 2020; 3(6): e2011834-e2011834. doi: https://doi.org/10.1001/jamanetworkopen2020.11834

Meraj G, Farooq M, Singh SK, Romshoo SA, Sudhanshu, Nathawat MS, et al. Coronavirus pandemic versus temperature in the context of Indian subcontinent: a preliminary statistical analysis. Environ Dev Sustain. 2020; 23 6524-6534. doi: https://doi.org/10.1007/s10668-020-00854-3

Pani SK, Lin NH, RavindraBabu S. Association of COVID-19 pandemic with meteorological parameters over Singapore. Sci Total Environ. 2020; 740: 140112. doi: https://doi.org/10.1016/j.scitotenv.2020.140112

Mandal CC, Panwar MS. Can the summer temperatures reduce COVID-19 cases? Public Health. 2020; 185: 72-79. doi: https://doi.org/10.1016/j.puhe.2020.05.065

Paital B. Nurture to nature via COVID-19, a self-regenerating environmental strategy of environment in global context. Sci Total Environ. 2020; 729: 139088. doi: https://doi.org/10.1016/j.scitotenv.2020.139088

Ujiie M, Tsuzuki S, Ohmagari N. Effect of temperature on the infectivity of COVID-19. Int J Infect Diseases. 2020; 95: 301-303. doi: https://doi.org/10.1016/j.ijid.2020.04.068

Xu H, Yan C, Fu Q, Xiao K, Yu Y, Han D, et al. Possible environmental effects on the spread of COVID-19 in China. Sci Total Environ. 2020; 731: 139211. doi: https://doi.org/10.1016/j.scitotenv.2020.139211

Zhu L, Liu X, Huang H, Avellán-Llaguno RD, Llaguno Lazo MM, Gaggeri A, et al. Meteorological impact on the COVID-19 pandemic: A study across eight severely affected regions in South America. Sci Total Environ. 2020; 744: 140881. doi: https://doi.org/10.1016/j.scitotenv.2020.140881

Eslami H, Jalili M. The role of environmental factors to transmission of SARS-CoV-2 (COVID-19). AMB Express. 2020; 10: 92. doi: https://doi.org/10.1186/s13568-020-01028-0

WangJ, TangK, FnegK, LinX, LvW, ChenK, et al. Impact of temperature and relative humidity on the transmission of COVID-19: A modeling study in China and the United States. SSRN Electronic Journal. 2020; 11(2): e043863. doi: https://doi.org/10.2139/ssrn.3551767

Livadiotis G. Statistical analysis of the impact of environmental temperature on the exponential growth rate of cases infected by COVID-19. PLOS ONE. 2020; 15(5): e0233875. doi: https://doi.org/10.1371/journal.pone.0233875

Ozyigit A. Understanding Covid-19 transmission: The effect of temperature and health behavior on transmission rates. Infect Dis Health. 2020; 25(4): 233-238. doi: https://doi.org/10.1016/j.idh.2020.07.001

Prata DN, Rodrigues W, Bermejo PH. Temperature significantly changes COVID-19 transmission in (sub)tropical cities of Brazil. Sci Total Environ. 2020; 729: 138862. doi: https://doi.org/10.1016/j.scitotenv.2020.138862

Biktasheva IV. Role of a habitat’s air humidity in Covid-19 mortality. Sci Total Environ. 2020; 736: 138763. doi: https://doi.org/10.1016/j.scitotenv.2020.138763

Fareed Z, Iqbal N, Shahzad F, Shah SGM, Zulfiqar B, Shahzad K, et al. Co-variance nexus between COVID-19 mortality, humidity, and air quality index in Wuhan, China: New insights from partial and multiple wavelet coherence. Air Qual Atmos Health. 2020; 13(6): 673-682. doi: https://doi.org/10.1007/s11869-020-00847-1

Sobral MFF, Duarte GB, da Penha Sobral AIG, Marinho MLM, de Souza Melo A, et al. Association between climate variables and global transmission oF SARS-CoV-2. Sci Total Environ. 2020; 729: 138997. doi: https://doi.org/10.1016/j.scitotenv.2020.138997

Qi H, Xiao S, Shi R, Ward MP, Chen Y, Tu W, et al. COVID-19 transmission in Mainland China is associated with temperature and humidity: A time-series analysis. Sci Total Environ. 2020; 728: 138778. doi: https://doi.org/10.1016/j.scitotenv.2020.138778

Ward MP, Xiao S, Shi R, Ward MP, Chen Y, Tu W, et al. The role of climate during the COVID‐19 epidemic in New South Wales, Australia. Transbound Emerg Dis. 2020; 728: 138778. doi: https://doi.org/10.1111/tbed.13631

Wu Y, Jing W, Liu J, Ma Q, Yuan J, Wang Y, et al. Effects of temperature and humidity on the daily new cases and new deaths of COVID-19 in 166 countries. Sci Total Environ. 2020; 729: 139051. doi: https://doi.org/10.1016/j.scitotenv.2020.139051

World Health Organization. Modes of transmission of virus causing COVID-19: Implications for IPC precaution recommendations. 2020.

Tsatsakis A, Petrakis D, Nikolouzakis TK, Docea AO, Calina D, Vinceti M, et al. COVID-19, an opportunity to reevaluate the correlation between long-term effects of anthropogenic pollutants on viral epidemic/pandemic events and prevalence. Food Chem Toxicol. 2020; 141: 111418. doi: https://doi.org/10.1016/j.fct.2020.111418

Frontera A, Cianfanelli L, Vlachos J, Landoni G, Cremona G. Severe air pollution links to higher mortality in COVID-19 patients: The “double-hit” hypothesis. J Infect. 2020; 81(2): 255-259. doi: https://doi.org/10.1016/j.jinf.2020.05.031

Lin CI, Tsai CH, Sun YL, Hsieh WY, Lin YC, Chen CY, et al. Instillation of particulate matter 2.5 induced acute lung injury and attenuated the injury recovery in ACE2 knockout mice. Int J Biol Sci. 2018; 14(3): 253-265. doi: https://doi.org/10.7150/ijbs.23489

Frontera A, Martin C, Vlachos K, Sgubin G. Regional air pollution persistence links to COVID-19 infection zoning. J Infect. 2020 81(2): 318-356. doi: https://doi.org/10.1016/j.jinf.2020.03.045

Setti L, Passarini F, De Gennaro G, Barbieri P, Perrone MG, Borelli M, et al. SARS-Cov-2RNA found on particulate matter of Bergamo in Northern Italy: First evidence. Environ Res. 2020; 188: 109754. doi: https://doi.org/10.1016/j.envres.2020.109754

Italian Society of Environmental Medicine (SIMA). Position Paper Particulate Matter and COVID-19. 2020.

Setti L, Passarini F, De Gennaro G, Barbieri P, Pallavicini A, Ruscio M, et al. Searching for SARS-COV-2 on particulate matter: A possible early indicator of COVID-19 epidemic recurrence. Int J Environ Res Public Health. 2020; 17(9): 2986-2986. doi: https://doi.org/10.3390/ijerph17092986

Epicentro (Epidemiología para la salud pública - ISS). Sorveglianza integrata COVID-19: i principali dati nazionali. 2020.

Conticini E, Frediani B, Caro D. Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy? Environ Pollut. 2020; 261: 114465. doi: https://doi.org/10.1016/j.envpol.2020.114465

Delnevo G, Mirri S, Roccetti M. Particulate matter and COVID-19 disease diffusion in Emilia-Romagna (Italy). Already a cold case? Computation. 2020; 8(2): 59. doi: https://doi.org/10.3390/computation8020059

Fattorini D, Regoli F. Role of the chronic air pollution levels in the Covid-19 outbreak risk in Italy. Environ Pollut. 2020; 264: 114732. doi: https://doi.org/10.1016/j.envpol.2020.114732

Setti L. Evaluation of the potential relationship between Particulate Matter (PM) pollution and COVID-19 infection spread in Italy. University of Bologna; University of Bari. 2020.

Setti L, Passarini F, De Gennaro G, Barbieri P, Perrone MG, Borelli M, et al. Airborne transmission route of COVID-19: Why 2 meters/6 feet of inter-personal distance could not be enough. Int J Environ Res Public Health. 2020; 17(8): 2932. doi: https://doi.org/10.3390/ijerph17082932

van Doremalen N, Morris DH, Holbrook MG, Gamble A, Williamson BN, Tamin A, et al. Aerosol and surface stability of SARS-CoV-2 as Compared with SARS-CoV-1. N Engl J Med. 2020; 382(16): 1564-1567. doi: https://doi.org/10.1056/NEJMc2004973

Milling A, Kehr R, Wulf A, Smalla K. Survival of bacteria on wood and plastic particles: Dependence on wood species and environmental conditions. Holzforschung. 2005; 59(1): 72-81. doi: https://doi.org/10.1515/HF.2005.012

Wu X, Nethery RC, Sabath MB, Braun D, Dominici F. Exposure to air pollution and COVID-19 mortality in the United States: A nationwide crosssectional study. medRxiv Preprint. 2020.doi: https://doi.org/10.1101/2020.04.05.20054502

Fronza R, Lusic M, Schimidt M, Lucic B. Spatial–Temporal Variations in Atmospheric Factors Contribute to SARS-CoV-2 Outbreak. Viruses. 2020; 12(6): 588. doi: https://doi.org/10.3390/v12060588

Jiang Y, Wu XJ, Guan YJ. Effect of ambient air pollutants and meteorological variables on COVID-19 incidence. Infect Control Hosp Epidemiol. 2020; 41(9): 1011-1015. doi: https://doi.org/10.1017/ice.2020.222

Adhikari A, Yin J. Short-term effects of ambient ozone, PM2.5, and meteorological factors on COVID-19 confirmed cases and deaths in Queens, New York. Int J Environ Res Public Health. 2020; 17(11): 4047. doi: https://doi.org/10.3390/ijerph17114047

Rodriguez-Villamizar LA, Belalcázar-Ceron LC, Fernández-Niño JA, Marín-Pineda DM, Rojas-Sánchez OA, Acuña-Merchán LA, et al. Air pollution, sociodemographic and health conditions effects on COVID-19 mortality in Colombia: An ecological study. Sci Total Environ, 2021 756: 144020. doi: https://doi.org/10.1016/j.scitotenv.2020.144020

Li H, Xu XL, Dai DW, Huang ZY, Ma Z, Guan YJ. Air pollution and temperature are associated with increased COVID-19 incidence: A time series study. Int J Infect Dis. 2020; 97: 278-282. doi: https://doi.org/10.1016/j.ijid.2020.05.076

Sasidharan M, Singh A, Torbaghan ME, Parlikad AK. A vulnerability-based approach to humanmobility reduction for countering COVID-19 transmission in London while considering local air quality. Sci Total Environ. 2020; 741: 140515. doi: https://doi.org/10.1016/j.scitotenv.2020.140515

Liang D, Shi L, Zhao J, Liu O, Schwartz J, Gao S, et al. Urban air pollution may enhance COVID-19 case-fatality and mortality rates in the United States. medRxiv Preprint. 2020. doi: https://doi.org/10.1101/2020.05.04.20090746

Eum KD, Kazemiparkouhi F, Wang B, Manjourides J, Pun V, Pavlu V, et al. Long-term NO2 exposures and cause-specific mortality in American older adults. Environ Int. 2019; 124: 10-15. doi: https://doi.org/10.1016/j.envint.2018.12.060

Lippmann. M, Leikauf GD. Environmental toxicants: Human exposures and their health effects, 4th edition. United States: Wiley Press, 2020. p. 455-486. ISBN: 978-1-119-43880-9

Seyer A, Sanlidag T. Solar ultraviolet radiation sensitivity of SARS-CoV-2. The Lancet Microbe. 2020; 1(1): e8-e9. doi: https://doi.org/10.1016/s2666-5247(20)30013-6

Grant WB, Lahore H, McDonnell SL, Baggerly CA, French CB, Aliano JL, et al. Evidence that vitamin d supplementation could reduce risk of influenza and covid-19 infections and deaths. Nutrients. 2020; 12(4): 988. doi: https://doi.org/10.3390/nu12040988

Zoran MA, Savastru RS, Savastru DM, Tautan MN. Assessing the relationship between ground levels of ozone (O(3)) and nitrogen dioxide (NO(2)) with coronavirus (COVID-19) in Milan, Italy. Sci Total Environ. 2020; 740: 140005. doi: https://doi.org/10.1016/j.scitotenv.2020.140005

Semple JL, Moore GWK. High levels of ambient ozone (O3) may impact COVID-19 in high altitude mountain environments. Resp Physio Neurobiol. 2020; 280: 103487. doi: https://doi.org/10.1016/j.resp.2020.103487

Sagripanti JL, Lytle CD. Estimated inactivation of coronaviruses by solar radiation with special reference to COVID‐19. Photochem Photobiol. 2020; 96(4): 731-737. doi: https://doi.org/10.1111/php.13293

Wen X, Liu C, Cao B, Wang S, Zhang Y, Zhong R. Relationship between the COVID-19 outbreak and temperature, humidity, and solar radiation across China. SSRN Elect J. 2020. doi: https://doi.org/10.2139/ssrn.3594115

Arias-Reyes C, Zubieta-DeUrioste N, Poma-Machicao L, Aliaga-Raduan F, . Carvajal-Rodriguez F, Dutschmann M, et al. Does the pathogenesis of SARS-CoV-2 virus decrease at high-altitude? Respir Physiol Neurobiol. 2020; 277: 103443. doi: https://doi.org/10.1016/j.resp.2020.103443

Mendonça F, Anjos M, Collischonn E, Murara P, Limberger L, Nascimento L, et al. Climate and Covid-19-Upgrade and solar radiation inuences based on Brazil cases. Res Square. 2020; doi: https://doi.org/10.21203/rs.3.rs-32885/v1

Abhimanyu, Coussens AK. The role of UV radiation and Vitamin D in the seasonality and outcomes of infectious disease. Photochem Photobiol Sci. 2017; 16(3): 314-338. doi: https://doi.org/10.1039/c6pp00355a

Alipio M. Do Latitude and Ozone concentration predict COVID-2019 cases in 34 Countries? SSRN Elect J 2020. doi: https://doi.org/10.2139/ssrn.3572114

Travaglio M, Yu Y, Popovic R, Selley L, Leal NS, Martins LM. Links between air pollution and COVID-19 in England. medRxiv Preprint. 2020. doi: https://doi.org/10.1101/2020.04.16.20067405

Bolaño-Ortiz TR, Camargo-Caicedo Y, Puliafito SE, Ruggeri MF, Bolaño-Diaz S, Pascual-Flores R, et al. Spread of SARS-CoV-2 through Latin America and the Caribbean region: A look from its economic conditions, climate and air pollution indicators. Environ Res. 2020; 191: 109938. doi: https://doi.org/10.1016/j.envres.2020.109938

Zhu Y, Xie J, Huang F, Cao L.. Association between short-term exposure to air pollution and COVID-19 infection: Evidence from China. Sci Total Environ. 2020; 727: 138704. doi: https://doi.org/10.1016/j.scitotenv.2020.138704

Ran J, Zhao S, Han L, Chen D, Yang L, Wang MH, et al. The ambient ozone and COVID-19 transmissibility in China: A data-driven ecological study of 154 cities. J Infect. 2020; 81(3): e9-e11. doi: https://doi.org/10.1016/j.jinf.2020.07.011

Ellwanger JH, Chies JAB. Wind: A neglected factor in the spread of infectious diseases. Lancet Planet Health. 2018; 2(11): e475-e475. doi: https://doi.org/10.1016/S2542-5196(18)30238-9

Al-Rousan N Al-Najjar H. The correlation between the spread of COVID-19 infections and weather variables in 30 Chinese provinces and the impact of Chinese government mitigation plans. Eur Rev Med Pharmacol Sci. 2020; 24(8): 4565-4571. doi: https://doi.org/10.26355/eurrev_202004_21042

Yuan J, Yun H, Lan W, Wang W, Sullivan SG, Jia S, et al. A climatologic investigation of the SARSCoV outbreak in Beijing, China. Am J Infect Control. 2006; 34(4): 234-236. doi: https://doi.org/10.1016/j.ajic.2005.12.006

Randazzo W, Truchado P, Cuevas-Ferrando E, Simón P, Allende A, Sánchez G. SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area. Water Res. 2020; 181: 115942. doi: https://doi.org/10.1016/j.watres.2020.115942

Zhang Z, Xue T, Jin X. Effects of meteorological conditions and air pollution on COVID-19 transmission: Evidence from 219 Chinese cities. Sci Total Environ. 2020; 741: 140244. doi: https://doi.org/10.1016/j.scitotenv.2020.14024

Zoran MA, Savastru RS, Savastru DM, Tautan MN. Assessing the relationship between surface levels of PM2.5 and PM10 particulate matter impact on COVID-19 in Milan, Italy. Sci Total Environ. 2020; 738: 139825. doi: https://doi.org/10.1016/j.scitotenv.2020.139825

Coccia, M. Factors determining the diffusion of COVID-19 and suggested strategy to prevent future accelerated viral infectivity similar to COVID. Sci Total Environ. 2020; 729: 138474. doi: https://doi.org/10.1016/j.scitotenv.2020.138474

Gao QY, Chen YX, Fang JY. 2019 Novel coronavirus infection and gastrointestinal tract. J Dig Dis. 2020; 21(3): 125-126. doi: https://doi.org/10.1111/1751-2980.12851

Nghiem LD, Morgan B, Donner E, Short MD. The COVID-19 pandemic: Considerations for the waste and wastewater services sector. Case Studies Chem Environ Enginee. 2020; 1: 100006. doi: https://doi.org/10.1016/j.cscee.2020.100006

Lee IC, Hou TI, Huang YH. Gastrointestinal and liver manifestations in patients with COVID-19. J Chin Med Assoc. 2020; 83: 521-523. doi: https://doi.org/10.1097/JCMA.0000000000000319

Medema G, Heijnen L, Elsinga G, Italiaander R, Brouwer A. Presence of SARS-Coronavirus-2 RNA in sewage and correlation with reported COVID-19 prevalence in the early stage of the epidemic in The Netherlands. Environ Sci Technol Lett. 2020; 7: 511-516. doi: https://doi.org/10.1021/acs.estlett.0c00357

Ali M, Zaid M, Saqib MAN, Ahmed H, Afzal MS. SARS‐CoV‐2 and the hidden carriers: Sewage, feline, and blood transfusion. J Med Virol. 2020; 92(11:) 2291-2292. doi: https://doi.org/10.1002/jmv.25956

La Rosa G, Iaconelli M, Mancini P, Ferraro GB, Veneri C, Bonadonna L, et al. First detection of SARS-CoV-2 in untreated wastewaters in Italy. Sci Total Environ. 2020; 736: 139652. doi: https://doi.org/10.1016/j.scitotenv.2020.139652

Lodder W, de Roda Husman AM. SARS-CoV-2 in wastewater: potential health risk, but also data source. Lancet Gastroenterol Hepatol. 2020; 5(6): 533-4. doi: https://doi.org/10.1016/S2468-1253(20)30087-X

Yunus AP, Masago Y, Hijioka Y. COVID-19 and surface water quality: Improved lake water quality during the lockdown. Sci Total Environ. 2020; 731: 139012. doi: https://doi.org/10.1016/j.scitotenv.2020.139012

Kitajima M, Ahmed W, Bibby K, Carducci A, Gerba CP, Hamilton KA, et al. SARS-CoV-2 in wastewater: State of the knowledge and research needs. Sci Total Environ. 2020; 739: 139076. doi: https://doi.org/10.1016/j.scitotenv.2020.139076

Daughton CG. Wastewater surveillance for population-wide Covid-19: The present and future. Sci Total Environ. 2020; 736: 139631. doi: https://doi.org/10.1016/j.scitotenv.2020.139631

Orive G, Lertxundi U, Barcelo D. Early SARS-CoV-2 outbreak detection by sewagebased epidemiology. Sci Total Environ. 2020; 732: 139298. doi: https://doi.org/10.1016/j.scitotenv.2020.139298

Dente SMR, Hashimoto S. COVID-19: A pandemic with positive and negative outcomes on resource and waste flows and stocks. Resour Conserv Recycl. 2020; 161: 104979. doi: https://doi.org/10.1016/j.resconrec.2020.104979

Decaro N Lorusso A. Novel human coronavirus (SARS-CoV-2): A lesson from animal coronaviruses. Vet Microbiol. 2020; 244: 108693. doi: https://doi.org/10.1016/j.vetmic.2020.108693

Sun J, He WT, Wang L, Lai A, Ji X, Zhai X, et al. COVID-19: Epidemiology, Evolution, and Cross-Disciplinary Perspectives. Trends Mol Med. 2020; 26(5): 483-495. doi: https://doi.org/10.1016/j.molmed.2020.02.008

Andersen KG, Rambaut A, Lipkin WI, Holmes ED, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020; 26(4): 450-452. doi: https://doi.org/10.1038/s41591-020-0820-9

Bedford J, Enria D, Giesecke J, Heymann DL, Ihekweazu C, Kobinger G, et al. COVID-19: Towards controlling of a pandemic. Lancet. 2020; 395(10229): 1015-1018. doi: https://doi.org/10.1016/s0140-6736(20)30673-5

LamTT, Jia N, Zhang YW, Shum MHH, Jiang JF, Zhu HC, et al. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature. 2020; 583(7815): 282-285. doi: https://doi.org/10.1038/s41586-020-2169-0

de Sadeleer N, Godfroid J. The story behind CoviD-19: Animal diseases at the crossroads of wildlife, livestock and human health. Eu J Risk Regul. 2020; 11(2): 210-227. doi: https://doi.org/10.1017/err.2020.45

Sironi M, Hasnain SE, Rosenthal B, Phan T, Luciani F, Shaw MA, et al. SARS-CoV-2 and COVID-19: A genetic, epidemiological, and evolutionary perspective. Infect Genet Evol. 2020; 84: 104384. doi: https://doi.org/10.1016/j.meegid.2020.104384

Borremans B, Faust C, Manlove KR, Sokolow SH, Lloyd-Smith JO. Cross-species pathogen spillover across ecosystem boundaries: mechanisms and theory. Philos Trans R Soc Lond B Biol Sci. 2019; 374(1782): 20180344. doi: https://doi.org/10.1098/rstb.2018.0344

Everard M, Johnston P, Santillo D, Staddon C. The role of ecosystems in mitigation and management of Covid-19 and other zoonoses. Environ Sci Policy. 2020; 111: 7-17. doi: https://doi.org/10.1016/j.envsci.2020.05.017

O’Callaghan-Gordo C, Antó JM. COVID-19: The disease of the anthropocene. Environ Res. 2020; 187: 109683. doi: https://doi.org/10.1016/j.envres.2020.109683

Nieto-Rabiela F, Wiratsudakul A, Suzán G, Rico-Chávez O. Viral networks and detection of potential zoonotic viruses in bats and rodents: A worldwide analysis. Zoonoses Public Health. 2019; 66(6): 655-666. doi: https://doi.org/10.1111/zph.12618

Johnson CK, Hitchens PL, Pandit PS, Rushmore J, Evans TS, Young CCW, et al. Global shifts in mammalian population trends reveal key predictors of virus spillover risk. Proc R Soc Lond B Biol Sci. 2020; 287(1924): 20192736. doi: https://doi.org/10.1098/rspb.2019.2736

Willig MR, Presley SJ, Plante JL, Bloch CP, Solari S, Pacheco V, et al. Guild-level responses of bats to habitat conversion in a lowland Amazonian rainforest: species composition and biodiversity. J Mamm. 2019; 100(1): 223-238. doi: https://doi.org/10.1093/jmammal/gyz023

Püttker T, Crouzeilles R, Almeida-Gomes M, Schmoeller M, Maurenza D, Alves-Pinto H, et al. Indirect effects of habitat loss via habitat fragmentation: A cross-taxa analysis of forestdependent species. Biol Conservation. 2020; 241: 108368. doi: https://doi.org/10.1016/j.biocon.2019.108368

Ceballos G, Ehrlich PR, Raven PH. Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction. Proc Natl Acad Sci U S A. 2020; 117(24): 13596-13602. doi: https://doi.org/10.1073/pnas.1922686117

Hasan SS, Zhen L, Miah MG, Ahamed T, Samie A. Impact of land use change on ecosystem services: A review. Environ Devel. 2020; 34: 100527. doi: https://doi.org/10.1016/j.envdev.2020.100527

Egeru A, Dejene SW, Siya A. Short report on implications of Covid-19 and emerging zoonotic infectious diseases for pastoralists and Africa. Pastoralism. 2020; 10: 1-10. doi: https://doi.org/10.1186/s13570-020-00173-2

Zohdy S, Schwartz TS, Oaks JR. The coevolution effect as a driver of spillover. Trends Parasitol. 2019; 35: 399-408. doi: https://doi.org/10.1016/j.pt.2019.03.010

White RJ, Razgour O. Emerging zoonotic diseases originating in mammals: a systematic review of effects of anthropogenic land‐use change. Mamm Rev. 2020; 50(4) 336-352. doi: https://doi.org/10.1111/mam.12201

Rohr JR, Barrett CB, Civitello DJ, Craft ME, Delius B, DeLeo GA, et al. Emerging human infectious diseases and the links to global food production. Nat Sustain. 2019; 2(6): 445-456. doi: https://doi.org/10.1038/s41893-019-0293-3

Ellwanger JH, Kulmann-Leal B, Kaminski VL, Valverde-Villegas JM, Da Veiga AB, Spilki FR, et al. Beyond diversity loss and climate change: Impacts of Amazon deforestation on infectious diseases and public health. An Acad Bras Cienc. 2020; 92(1): 20191375. doi: https://doi.org/10.1590/0001-3765202020191375

Furumo PR, Lambin EF. Scaling up zerodeforestation initiatives through public-private partnerships: A look inside post-conflict Colombia. Global Environ Change. 2020; 62: 102055. doi: https://doi.org/10.1016/j.gloenvcha.2020.102055

Corlett RT, Primack RB, Devictor V, Maas B, Goswami VR, Bates AE, et al. Impacts of the coronavirus pandemic on biodiversity conservation. Biol Conserv. 2020; 246: 108571. doi: http://dx.doi.org/10.1016/j.biocon.2020.108571

Pansini R, Fornacca D. COVID-19 higher induced mortality in Chinese regions with lower air quality. medRxiv Preprint. 2020: 1-16. doi: https://doi.org/10.1101/2020.04.04.20053595

Becchetti L, Conzo G, Conzo P, Salustri F. Understanding the heterogeneity of adverse COVID-19 Outcomes: the role of poor quality of air and lockdown decisions. SSRN Elect J. 2020. doi: https://doi.org/10.2139/ssrn.3572548

Hendryx M, Luo J. COVID-19 prevalence and fatality rates in association with air pollution emission concentrations and emission sources. Environ Poll. 2020; 265(A): 115126. doi: https://doi.org/10.1016/j.envpol.2020.115126

Félix-Arellano EE, Schilmann A, Hurtado-Díaz M, Texcalac-Sangrador JL, Riojas-Rodríguez H. Quick review: air pollution and morbi-mortalityby Covid-19. Salud Publica Mex. 2020; 62(5): 582-589. doi: https://doi.org/10.21149/11481

Hellewell J, Abbott S, Gimma A, Bosse NI, Jarvis CI, Russell TW, et al. Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. Lancet Glob Health. 2020; 8(4): e488-e496. doi: https://doi.org/10.1016/S2214-109X(20)30074-7

Auler AC, Cássaro FAM, da Silva VO, Pires LF. Evidence that high temperatures and intermediate relative humidity might favor the spread of COVID-19 in tropical climate: A case study for the most affected Brazilian cities. Sci Total Environ. 2020; 729: 139090. doi: https://doi.org/10.1016/j.scitotenv.2020.139090

Amoatey P, Omidvarborna H, Baawain MS, Al-Mamun A. Impact of building ventilation systems and habitual indoor incense burning on SARS-CoV-2 virus transmissions in Middle Eastern countries. Sci Total Environ. 2020; 733: 139356. doi: https://doi.org/10.1016/j.scitotenv.2020.139356

Bashir MF, Ma B, Komal B, Bashir MA, Tan D, Bashir M. Correlation between climate indicators and COVID-19 pandemic in New York, USA. Sci Total Environ. 2020; 728: 138835. doi: https://doi.org/10.1016/j.scitotenv.2020.138835

Bianconi V, Bronzo P, Banach M, Sahebkar A, Mannarino MR, Pirro M. Particulate matter pollution and the COVID-19 outbreak: results from Italian regions and provinces. Arch Med Sci. 2020; 16(1): 985-992. doi: https://doi.org/10.5114/aoms.2020.95336

Bontempi E. First data analysis about possible COVID-19 virus airborne diffusion due to air particulate matter (PM): The case of Lombardy (Italy). Environ Res. 2020; 186: 109639. doi: https://doi.org/10.1016/j.envres.2020.109639

Brandt EB, Beck AF, Mersha TB. Air pollution, racial disparities, and COVID-19 mortality. J Allerg Clin Immunol. 2020; 146: 61-63. doi: https://doi.org/10.1016/j.jaci.2020.04.035

Ogen, Y. Assessing nitrogen dioxide (NO(2)) levels as a contributing factor to coronavirus (COVID-19) fatality. Sci Total Environ. 2020; 726: 138605. doi: https://doi.org/10.1016/j.scitotenv.2020.138605

Pansini R, Fornacca D. Initial evidence of higher morbidity and mortality due to SARSCoV-2 in regions with lower air quality. medRxiv Preprint. 2020. doi: https://doi.org/10.1101/2020.04.04.20053595

Setti L, Passarini F, De Gennaro G, Barbieri P, Perrone MG, Piazzalunga A, et al. The Potential role of particulate matter in the spreading of COVID-19 in Northern Italy: First evidence-based research hypotheses. medRxiv Preprint. 2020. doi: https://doi.org/10.1101/2020.04.11.20061713

Wang B, Liu J, Fu S, Xu X, Li L, Ma Y, et al. An effect assessment of Airborne particulate matter pollution on COVID-19: A multi-city Study in China. medRxiv Preprint. 2020. doi: https://doi.org/10.1101/2020.04.09.20060137

Yao Y, Pan J, Liu Z, Meng Xia, Wang W, Kan H, et al. Temporal association between particulate matter pollution and case fatality rate of COVID-19 in Wuhan. Environ Res. 2020; 189: 109941. doi: https://doi.org/10.1016/j.envres.2020.109941

Yao Y, Pan J, Wang W, Liu Z, Kan H, Qiu Y, et al. Association of particulate matter pollution and case fatality rate of COVID-19 in 49 Chinese cities. Sci Total Environ. 2020; 741: 140396. doi: https://doi.org/10.1016/j.scitotenv.2020.140396

Guasp M, Laredo C, Urra X. Higher Solar Irradiance Is Associated With a Lower Incidence of Coronavirus Disease 2019. Clin Infect Dis. 2020;71(16): 2269-2271. doi: https://doi.org/10.1093/cid/ciaa575

Coccia M. How high wind speed can reduce negative effects of confirmed cases and total deaths of COVID-19 infection in society. SSRN Elect J. 2020. doi: https://doi.org/10.2139/ssrn.3603380

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Derechos de autor 2021 Karina Susana Pastor Sierra, Ana Peñata–Taborda, Andrés Coneo–Pretelt, Luisa Jiménez–Vidal, Gean Arteaga–Arroyo, Dina Ricardo Caldera, Shirley Salcedo–Arteaga, Claudia Galeano–Páez, Pedro Espitia–Pérez, Lyda Espitia–Pérez

Descargas

Los datos de descargas todavía no están disponibles.