Abstract
In a market environment of power systems, each producer pursues its maximal profit while the independent system operator is in charge of the system reliability and the minimization of the total generation cost when generating the generation maintenance scheduling (GMS). Thus, the GMS is inherently a multi-objective optimization problem as its objectives usually conflict with each other. This paper proposes a multi-objective GMS model in a market environment which includes three types of objectives, i.e., each producer’s profit, the system reliability, and the total generation cost. The GMS model has been solved by the group search optimizer with multiple producers (GSOMP) on two test systems. The simulation results show that the model is well solved by the GSOMP with a set of evenly distributed Pareto-optimal solutions obtained. The simulation results also illustrate that one producer’s profit conflicts with another one’s, that the total generation cost does not conflict with the profit of the producer possessing the cheapest units while the total generation cost conflicts with the other producers’ profits, and that the reliability objective conflicts with the other objectives.
Similar content being viewed by others
References
Barot, H., Bhattacharya, K., 2008. Security coordinated maintenance scheduling in deregulation based on genco contribution to unserved energy. IEEE Trans. Power Syst., 23(4):1871–1882. [doi:10.1109/TPWRS.2008.2002296]
Burke, E.K., Smith, A.J., 2000. Hybrid evolutionary techniques for the maintenance scheduling problem. IEEE Trans. Power Syst., 15(1):122–128. [doi:10.1109/59.852110]
Chattopadhyay, D., Bhattacharya, K., Parikh, J., 1995. A systems approach to least-cost maintenance scheduling for an interconnected power system. IEEE Trans. Power Syst., 10(4):2002–2007. [doi:10.1109/59.476069]
Chen, L., Toyoda, J., 1991. Optimal generating unit maintenance scheduling for multi-area system with network constraints. IEEE Trans. Power Syst., 6(3):1168–1174. [doi:10.1109/59.119262]
Chen, X.D., Zhan, J.P., Wu, Q.H., et al., 2014. Multi-objective optimization of generation maintenance scheduling. IEEE Power & Energy Society General Meeting, p.1–5, accepted.
Christiaanse, W.R., Palmer, A.H., 1972. A technique for the automated scheduling of the maintenance of generating facilities. IEEE Trans. Power App. Syst., PAS-91(1):137–144. [doi:10.1109/TPAS.1972.293323]
Conejo, A.J., Garcia-Bertrand, R., Diaz-Salazar, M., 2005. Generation maintenance scheduling in restructured power systems. IEEE Trans. Power Syst., 20(2):984–992. [doi:10.1109/TPWRS.2005.846078]
Deb, K., 2001. Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley and Sons, USA.
Dopazo, J.F., Merrill, H.M., 1975. Optimal generator maintenance scheduling using integer programming. IEEE Trans. Power App. Syst., 94(5):1537–1545. [doi:10.1109/T-PAS.1975.31996]
El-Sharkh, M.Y., 2014. Clonal selection algorithm for power generators maintenance scheduling. Int. J. Electr. Power Energy Syst., 57:73–78. [doi:10.1016/j.ijepes.2013.11.051]
Feng, C., Wang, X., 2010. A competitive mechanism of unit maintenance scheduling in a deregulated environment. IEEE Trans. Power Syst., 25(1):351–359. [doi:10.1109/TPWRS.2009.2036469]
Feng, C., Wang, X., Li, F., 2009. Optimal maintenance scheduling of power producers considering unexpected unit failure. IET Gener. Transm. Distrib., 3(5):460–471. [doi:10.1049/iet-gtd.2008.0427]
Guo, C.X., Zhan, J.P., Wu, Q.H., 2012. Dynamic economic emission dispatch based on group search optimizer with multiple producers. Elect. Power Syst. Res., 86:8–16. [doi:10.1016/j.epsr.2011.11.015]
He, S., Wu, Q.H., Saunders, J.R., 2009. Group search optimizer: an optimization algorithm inspired by animal searching behavior. IEEE Trans. Evol. Comput., 13(5):973–990. [doi:10.1109/TEVC.2009.2011992]
Heo, J.H., Kim, M.K., Park, G.P., et al., 2011. A reliability-centered approach to an optimal maintenance strategy in transmission systems using a genetic algorithm. IEEE Trans. Power Delivery, 26(4):2171–2179. [doi:10.1109/TPWRD.2011.2162752]
Hwang, C.L., Yoon, K., 1981. Multiple Attribute Decision Making: Methods and Applications. Springer-Verlag, New York, USA.
Kralj, B.L., Petrović, R., 1988. Optimal preventive maintenance scheduling of thermal generating units in power systems—a survey of problem formulations and solution methods. Eur. J. Oper. Res., 35(1):1–15. [doi:10.1016/0377-2217(88)90374-8]
Lu, G., Chung, C.Y., Wong, K.P., et al., 2008. Unit maintenance scheduling coordination mechanism in electricity market environment. IET Gener. Transm. Distrib., 2(5):646–654. [doi:10.1049/iet-gtd:20070126]
Marwali, M.K.C., Shahidehpour, S.M., 1998. Integrated generation and transmission maintenance scheduling with network constraints. IEEE Trans. Power Syst., 13(3):1063–1068. [doi:10.1109/59.709100]
Marwali, M.K.C., Shahidehpour, S.M., 1999. Long-term transmission and generation maintenance scheduling with network, fuel and emission constraints. IEEE Trans. Power Syst., 14(3):1160–1165. [doi:10.1109/59.780951]
Marwali, M.K.C., Shahidehpour, S.M., 2000. Coordination between long-term and short-term generation scheduling with network constraints. IEEE Trans. Power Syst., 15(3):1161–1167. [doi:10.1109/59.871749]
Mendoza, J.E., Lopez, M.E., Coello, C.A.C., et al., 2009. Microgenetic multiobjective reconfiguration algorithm considering power losses and reliability indices for medium voltage distribution network. IET Gener. Transm. Distrib., 3(9):825–840. [doi:10.1049/iet-gtd.2009.0009]
Niknam, T., Doagou-Mojarrad, H., 2012. Multiobjective economic/emission dispatch by multiobjective thetasparticle swarm optimisation. IET Gener. Transm. Distrib., 6(5):363–377. [doi:10.1049/iet-gtd.2011.0698]
Pandzic, H., Conejo, A.J., Kuzle, I., et al., 2012. Yearly maintenance scheduling of transmission lines within a market environment. IEEE Trans. Power Syst., 27(1):407–415. [doi:10.1109/TPWRS.2011.2159743]
Pandzic, H. Conejo, A.J., Kuzle, I., 2013. An EPEC approach to the yearly maintenance scheduling of generating units. IEEE Trans. Power Syst., 28(2):922–930. [doi:10.1109/TPWRS.2012.2219326]
Saraiva, J.T., Pereira, M.L., Mendes, V.T., et al., 2011. A simulated annealing based approach to solve the generator maintenance scheduling problem. Elect. Power Syst. Res., 81(7):1283–1291. [doi:10.1016/j.epsr.2011.01.013]
Schlünz, E.B., van Vuuren, J.H., 2013. An investigation into the effectiveness of simulated annealing as a solution approach for the generator maintenance scheduling problem. Int. J. Electr. Power Energy Syst., 53:166–174. [doi:10.1016/j.ijepes.2013.04.010]
Shahidehpour, M., Marwali, M., 2000. Maintenance Scheduling in Restructured Power Systems. Kluwer Academic Pub, Norwell.
Subcommittee, P.M., 1979. IEEE reliability test system. IEEE Trans. Power App. Syst., PAS-98(6):2047–2054. [doi:10.1109/TPAS.1979.319398]
Tripathi, P.K., Bandyopadhyay, S., Pal, S.K., 2007. Multiobjective particle swarm optimization with time variant inertia and acceleration coefficients. Inform. Sci., 177(22):5033–5049. [doi:10.1016/j.ins.2007.06.018]
Wang, Y., Pham, H., 2011. A multi-objective optimization of imperfect preventive maintenance policy for dependent competing risk systems with hidden failure. IEEE Trans. Rel., 60(4):770–781. [doi:10.1109/TR.2011.2167779]
Wu, L., Shahidehpour, M., Li, T., 2008. GENCO’s risk-based maintenance outage scheduling. IEEE Trans. Power Syst., 23(1):127–136. [doi:10.1109/TPWRS.2007.913295]
Wu, Q.H., Lu, Z., Li, M.S., et al., 2008. Optimal placement of FACTS devices by a group search optimizer with multiple producer. IEEE Congress on Evolutionary Computation, p.1033–1039. [doi:10.1109/CEC.2008.4630923]
Yang, F., Chang, C.S., 2009a. Multiobjective evolutionary optimization of maintenance schedules and extents for composite power systems. IEEE Trans. Power Syst., 24(4):1694–1702. [doi:10.1109/TPWRS.2009.2030354]
Yang, F., Chang, C.S., 2009b. Optimisation of maintenance schedules and extents for composite power systems using multi-objective evolutionary algorithm. IET Gener. Transm. Distrib., 3(10):930–940. [doi:10.1049/iet-gtd.2009.0172]
Yang, F., Kwan, C.M., Chang, C.S., 2008. Multiobjective evolutionary optimization of substation maintenance using decision-varying Markov model. IEEE Trans. Power Syst., 23(3):1328–1335. [doi:10.1109/TPWRS.2008.922637]
Yare, Y., Venayagamoorthy, G.K., Aliyu, U.O., 2008. Optimal generator maintenance scheduling using a modified discrete PSO. IET Gener. Transm. Distrib., 2(6):834–846. [doi:10.1049/iet-gtd:20080030]
Yellen, J., Al-Khamis, T.M., Vemuri, S., et al., 1992. A decomposition approach to unit maintenance scheduling. IEEE Trans. Power Syst., 7(2):726–733. [doi:10.1109/59.141779]
Zhan, J.P., Yin, Y.J., Guo, C.X., et al., 2011. Integrated maintenance scheduling of generators and transmission lines based on fast group searching optimizer. IEEE Power and Energy Society General Meeting, p.1–6. [doi:10.1109/PES.2011.6039246]
Author information
Authors and Affiliations
Corresponding author
Additional information
Project supported by the National High-Tech R&D Program (863) of China (No. 2011AA05A120), the National Basic Research Program (973) of China (No. 2012CB215100), and the Zhejiang Provincial Natural Science Foundation of China (No. LZ12E07002)
Rights and permissions
About this article
Cite this article
Zhan, Jp., Guo, Cx., Wu, Qh. et al. Generation maintenance scheduling based on multiple objectives and their relationship analysis. J. Zhejiang Univ. - Sci. C 15, 1035–1047 (2014). https://doi.org/10.1631/jzus.C1400030
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/jzus.C1400030