[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Data center network architecture in cloud computing: review, taxonomy, and open research issues

  • Review
  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

The data center network (DCN), which is an important component of data centers, consists of a large number of hosted servers and switches connected with high speed communication links. A DCN enables the deployment of resources centralization and on-demand access of the information and services of data centers to users. In recent years, the scale of the DCN has constantly increased with the widespread use of cloud-based services and the unprecedented amount of data delivery in/between data centers, whereas the traditional DCN architecture lacks aggregate bandwidth, scalability, and cost effectiveness for coping with the increasing demands of tenants in accessing the services of cloud data centers. Therefore, the design of a novel DCN architecture with the features of scalability, low cost, robustness, and energy conservation is required. This paper reviews the recent research findings and technologies of DCN architectures to identify the issues in the existing DCN architectures for cloud computing. We develop a taxonomy for the classification of the current DCN architectures, and also qualitatively analyze the traditional and contemporary DCN architectures. Moreover, the DCN architectures are compared on the basis of the significant characteristics, such as bandwidth, fault tolerance, scalability, overhead, and deployment cost. Finally, we put forward open research issues in the deployment of scalable, low-cost, robust, and energy-efficient DCN architecture, for data centers in computational clouds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abu-Libdeh, H., Costa, P., Rowstron, A., et al., 2010. Symbiotic routing in future data centers. ACM SIGCOMM Comput. Commun. Rev., 40(4):51–62. [doi:10.1145/1851275.1851191]

    Article  Google Scholar 

  • Al-Fares, M., Loukissas, A., Vahdat, A., 2008. A scalable, commodity data center network architecture. ACM SIGCOMM Comput. Commun. Rev., 38(4):63–74. [doi:10.1145/1402946.1402967]

    Article  Google Scholar 

  • Alon, N., Roichman, Y., 1994. Random Cayley graphs and expanders. Random Struct. Algor., 5(2):271–284. [doi:10.1002/rsa.3240050203]

    Article  MathSciNet  MATH  Google Scholar 

  • Armbrust, M., Fox, A., Griffith, R., et al., 2010. A view of cloud computing. Commun. ACM, 53(4):50–58. [doi:10.1145/1721654.1721672]

    Article  Google Scholar 

  • Barabási, A.L., Albert, R., 1999. Emergence of scaling in random networks. Science, 286(5439):509–512. [doi:10.1126/science.286.5439.509]

    Article  MathSciNet  Google Scholar 

  • Beimborn, D., Miletzki, T., Wenzel, S., 2011. Platform as a service (PaaS). Bus. Inform. Syst. Eng., 3(6):381–384. [doi:10.1007/s12599-011-0183-3]

    Article  Google Scholar 

  • Beloglazov, A., Buyya, R., 2010. Energy efficient resource management in virtualized cloud data centers. Proc. 10th IEEE/ACM Int. Conf. on Cluster, Cloud and Grid Computing, p.826–831.

    Google Scholar 

  • Bhardwaj, S., Jain, L., Jain, S., 2010. Cloud computing: a study of infrastructure as a service (IaaS). Int. J. Eng. Inform. Technol., 2(1):60–63.

    Google Scholar 

  • Bilal, K., Khan, S.U., Kolodziej, J., et al., 2012. A comparative study of data center network architectures. 26th European Conf. on Modelling and Simulation, p.526–532. [doi:10.7148/2012-0526-0532]

    Google Scholar 

  • Bilal, K., Khan, S.U., Zhang, L., et al., 2013a. Quantitative comparisons of the state-of-the-art data center architectures. Concurr. Comput. Pract. Exp., 25(12):1771–1783. [doi:10.1002/cpe.2963]

    Article  Google Scholar 

  • Bilal, K., Manzano, M., Khan, S.U., et al., 2013b. On the characterization of the structural robustness of data center networks. IEEE Trans. Cloud Comput., 1(1):64–77.

    Article  Google Scholar 

  • Borthakur, D., 2007. The Hadoop Distributed File System: Architecture and Design. Available from http://svn.eu.apache.org [Accessed on Jan. 13, 2014].

    Google Scholar 

  • Boru, D., Kliazovich, D., Granelli, F., et al., 2013. Energyefficient data replication in cloud computing datacenters. IEEE Globecom Int. Workshop on Cloud Computing Systems, Networks, and Applications, p.446–451.

    Google Scholar 

  • Buxmann, P., Hess, T., Lehmann, S., 2008. Software as a service. Wirtschaftsinformatik, 50(6):500–503. [doi:10.1007/s11576-008-0095-0]

    Article  Google Scholar 

  • Buyya, R., Yeo, C.S., Venugopal, S., 2008. Market-oriented cloud computing: vision, hype, and reality for delivering IT services as computing utilities. 10th IEEE Int. Conf. on High Performance Computing and Communications, p.5–13.

    Google Scholar 

  • Chang, F., Dean, J., Ghemawat, S., et al., 2008. Bigtable: a distributed storage system for structured data. ACM Trans. Comput. Syst., 26(2):1–26. [doi:10.1145/1365815.1365816]

    Article  MATH  Google Scholar 

  • Chen, K., Singla, A., Singh, A., et al., 2012a. OSA: an optical switching architecture for data center networks with unprecedented flexibility. Proc. 9th USENIX Conf. on Networked Systems Design and Implementation.

    Google Scholar 

  • Chen, Y., Griffith, R., Liu, J., et al., 2009. Understanding TCP incast throughput collapse in datacenter networks. Proc. 1st ACM Workshop on Research on Enterprise Networking, p.73–82. [doi:10.1145/1592681.1592693]

    Chapter  Google Scholar 

  • Chen, Y., Alspaugh, S., Borthakur, D., et al., 2012. Energy efficiency for large-scale MapReduce workloads with significant interactive analysis. Proc. 7th ACM European Conf. on Computer Systems, p.43–56. [doi:10.1145/2168836.2168842]

    Google Scholar 

  • Cisco Data Center, 2007. Infrastructure 2.5 Design Guide.

    Google Scholar 

  • Clos, C., 1953. A study of non-blocking switching networks. Bell Syst. Techn. J., 32(2):406–424. [doi:10.1002/j.1538-7305.1953.tb01433.x]

    Article  Google Scholar 

  • Cui, Y., Wang, H., Cheng, X., et al., 2011. Wireless data center networking. IEEE Wirel. Commun., 18(6):46–53. [doi:10.1109/MWC.2011.6108333]

    Article  Google Scholar 

  • Dally, W.J., Towles, B., 2004. Principles and Practices of Interconnection Networks. Morgan Kaufmann, San Francisco, CA, USA.

    Google Scholar 

  • Dean, J., Ghemawat, S., 2008. MapReduce: simplified data processing on large clusters. Commun. ACM, 51(1):107–113. [doi:10.1145/1327452.1327492]

    Article  Google Scholar 

  • Ding, Z., Guo, D., Liu, X., et al., 2012. A MapReducesupported network structure for data centers. Concurr. Comput. Pract. Exp., 24(12):1271–1295. [doi:10.1002/cpe.1791]

    Article  Google Scholar 

  • Droms, R., 1997. Dynamic Host Configuration Protocol. RFC Editor, United States.

    Google Scholar 

  • Farrington, N., Porter, G., Radhakrishnan, S., et al., 2011. Helios: a hybrid electrical/optical switch architecture for modular data centers. ACM SIGCOMM Comput. Commun. Rev., 41(4):339–350.

    Google Scholar 

  • Formu, J., 2009. Cloud Cube Model: Selecting Cloud Formations for Secure Collaboration.

    Google Scholar 

  • Foster, I., Kesselman, C., Nick, J., et al., 2002. Grid services for distributed system integration. Computer, 35(6):37–46. [doi:10.1109/MC.2002.1009167]

    Article  Google Scholar 

  • Frécon, E., Stenius, M., 1998. Dive: a scaleable network architecture for distributed virtual environments. Distr. Syst. Eng., 5(3):91–100. [doi:10.1088/0967-1846/5/3/002]

    Article  Google Scholar 

  • Gantz, J., Reinsel, D., 2012. The digital universe in 2020: big data, bigger digital shadows, and biggest growth in the far east. IDC iView: IDC Analyze the Future.

    Google Scholar 

  • Ghemawat, S., Gobioff, H., Leung, S.T., 2003. The Google File System. ACM SIGOPS Oper. Syst. Rev., 37(5): 29–43. [doi:10.1145/1165389.945450]

    Article  Google Scholar 

  • Greenberg, A., Hamilton, J., Maltz, D.A., et al., 2008a. The cost of a cloud: research problems in data center networks. ACM SIGCOMM Comput. Commun. Rev., 39(1):68–73. [doi:10.1145/1496091.1496103]

    Article  Google Scholar 

  • Greenberg, A., Lahiri, P., Maltz, D., et al., 2008b. Towards a next generation data center architecture: scalability and commoditization. Proc. ACM Workshop on Programmable Routers for Extensible Services of Tomorrow, p.57–62. [doi:10.1145/1397718.1397732]

    Chapter  Google Scholar 

  • Greenberg, A., Hamilton, J.R., Jain, N., et al., 2009. Vl2: a scalable and flexible data center network. ACM SIGCOMM Comput. Commun. Rev., 39(4):51–62. [doi:10.1145/1594977.1592576]

    Article  Google Scholar 

  • Guo, C., Wu, H., Tan, K., et al., 2008. DCell: a scalable and fault-tolerant network structure for data centers. ACM SIGCOMM Comput. Commun. Rev., 38(4):75–86. [doi:10.1145/1402946.1402968]

    Article  Google Scholar 

  • Guo, C., Lu, G., Li, D., et al., 2009. BCube: a high performance, server-centric network architecture for modular data centers. ACM SIGCOMM Comput. Commun. Rev., 39(4):63–74. [doi:10.1145/1594977.1592577]

    Article  Google Scholar 

  • Gyarmati, L., Trinh, T., 2010. Scafida: a scale-free network inspired data center architecture. ACM SIGCOMM Comput. Commun. Rev., 40(5):4–12. [doi:10.1145/1880153.1880155]

    Article  Google Scholar 

  • Heller, B., Seetharaman, S., Mahadevan, P., et al., 2010. ElasticTree: saving energy in data center networks. Proc. 7th USENIX Conf. on Networked Systems Design and Implementation, p.19–21.

    Google Scholar 

  • Ikeda, T., Tsutsumi, O., 1995. Optical switching and image storage by means of azobenzene liquid-crystal films. Science, 268(5219):1873–1875. [doi:10.1126/science.268.5219.1873]

    Article  Google Scholar 

  • Isard, M., Budiu, M., Yu, Y., et al., 2007. Dryad: distributed data-parallel programs from sequential building blocks. ACM SIGOPS Operat. Syst. Rev., 41(3):59–72. [doi:10.1145/1272998.1273005]

    Article  Google Scholar 

  • Jericho Forum, 2009. Cloud Cube Model: Selecting Cloud Formations for Secure Collaboration.

    Google Scholar 

  • Kandula, S., Padhye, J., Bahl, P., 2009. Flyways to Decongest Data Center Networks.

    Google Scholar 

  • Katayama, Y., Takano, K., Kohda, Y., et al., 2011. Wireless data center networking with steered-beam mm wave links. IEEE Wireless Communications and Networking Conf., p.2179–2184.

    Google Scholar 

  • Lee, Y.C., Zomaya, A.Y., 2012. Energy efficient utilization of resources in cloud computing systems. J. Supercomput., 60(2):268–280. [doi:10.1007/s11227-010-0421-3]

    Article  MathSciNet  Google Scholar 

  • Li, D., Guo, C., Wu, H., et al., 2009. Ficonn: using backup port for server interconnection in data centers. IEEE INFOCOM, p.2276–2285.

    Google Scholar 

  • Li, W., Svard, P., 2010. REST-based SOA application in the cloud: a text correction service case study. World Congress on Services, p.84–90.

    Google Scholar 

  • Lian, F.L., Moyne, J., Tilbury, D., 2002. Network design consideration for distributed control systems. IEEE Trans. Contr. Syst. Technol., 10(2):297–307. [doi:10.1109/87.987076]

    Article  Google Scholar 

  • Manzano, M., Bilal, K., Calle, E., et al., 2013. On the connectivity of data center networks. IEEE Commun. Lett., 17(11):2172–2175. [doi:10.1109/LCOMM.2013.091913.131176]

    Article  Google Scholar 

  • Niranjan Mysore, R., Pamboris, A., Farrington, N., et al., 2009. Portland: a scalable fault-tolerant layer 2 data center network fabric. ACM SIGCOMM Comput. Commun. Rev., 39(4):39–50. [doi:10.1145/1594977.1592575]

    Article  Google Scholar 

  • Popa, L., Ratnasamy, S., Iannaccone, G., et al., 2010. A cost comparison of datacenter network architectures. Proc. 6th Int. Conf. Co-NEXT, Article 16. [doi:10.1145/1921168.1921189]

    Google Scholar 

  • Ranachandran, K., 2008. 60 GHz Data-Center Networking: Wireless=>Worryless. Technical Report, NEC Laboratories America, Inc. Redkar, T., Guidici, T., 2011. Windows Azure Platform. Apress.

    Google Scholar 

  • Rimal, B., Choi, E., Lumb, I., 2009. A taxonomy and survey of cloud computing systems. 5th Int. Joint Conf. on INC, IMS and IDC, p.44–51. [doi:10.1109/NCM.2009.218]

    Chapter  Google Scholar 

  • Shin, J.Y., Sirer, E.G., Weatherspoon, H., et al., 2012. On the feasibility of completely wireless datacenters. Proc. 8th ACM/IEEE Symp. on Architectures for Networking and Communications Systems, p.3–14. [doi:10.1145/2396556.2396560]

    Google Scholar 

  • Singh, A., Korupolu, M., Mohapatra, D., 2008. Serverstorage virtualization: integration and load balancing in data centers. Proc. ACM/IEEE Conf. on Supercomputing, p.53.

    Google Scholar 

  • Singla, A., Hong, C.Y., Popa, L., et al., 2012. Jellyfish: networking data centers randomly. Proc. 9th USENIX Conf. on Networked Systems Design and Implementation, p.17.

    Google Scholar 

  • Tarantino, A., 2012. Point-of-view paper: high tech’s innovative approach to sustainability. Int. J. Innov. Sci., 4(1):37–40. [doi:10.1260/1757-2223.4.1.37]

    Article  MathSciNet  Google Scholar 

  • Tennenhouse, D., Wetherall, D., 2002. Towards an active network architecture. Proc. DARPA Active Networks Conf. and Exposition, p.2–15. [doi:10.1109/DANCE.2002.1003480]

    Chapter  Google Scholar 

  • Tschudi, W., Xu, T., Sartor, D., et al., 2004. Energy Efficient Data Centers. Lawrence Berkeley National Laboratory.

    Book  Google Scholar 

  • Tziritas, N., Xu, C.Z., Loukopoulos, T., et al., 2013. Application-aware workload consolidation to minimize both energy consumption and network load in cloud environments. 42nd IEEE Int. Conf. on Parallel Processing, p.449–457.

    Google Scholar 

  • USEPA, 2012. 2012 Annual Report-US Environmental Protection Agency.

    Google Scholar 

  • Vahdat, A., Al-Fares, M., Farrington, N., et al., 2010. Scaleout networking in the data center. IEEE Micro, 30(4):29–41. [doi:10.1109/MM.2010.72]

    Article  Google Scholar 

  • Valiant, L.G., 1990. A bridging model for parallel computation. Commun. ACM, 33(8):103–111. [doi:10.1145/79173.79181]

    Article  Google Scholar 

  • Wang, G., Andersen, D.G., Kaminsky, M., et al., 2010. C-through: part-time optics in data centers. ACM SIGCOMM Comput. Commun. Rev., 40(4):327–338. [doi:10.1145/1851275.1851222]

    Article  Google Scholar 

  • Wu, H., Lu, G., Li, D., et al., 2009. MDCube: a high performance network structure for modular data center interconnection. Proc. 5th Int. Conf. on Emerging Networking Experiments and Technologies, p.25–36. [doi:10.1145/1658939.1658943]

    Chapter  Google Scholar 

  • Wu, K., Xiao, J., Ni, L.M., 2012. Rethinking the architecture design of data center networks. Front. Comput. Sci., 6(5):596–603.

    MathSciNet  Google Scholar 

  • Zahariev, A., 2009. Google APP Engine. Helsinki University of Technology, Helsinki, Finland.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Han Qi or Abdullah Gani.

Additional information

Project supported by the Malaysian Ministry of Higher Education under the University of Malaya High Impact Research Grant (No. UM.C/HIR/MOHE/FCSIT/03)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, H., Shiraz, M., Liu, Jy. et al. Data center network architecture in cloud computing: review, taxonomy, and open research issues. J. Zhejiang Univ. - Sci. C 15, 776–793 (2014). https://doi.org/10.1631/jzus.C1400013

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1400013

Key words

CLC number

Navigation