[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Coordinated standoff tracking of moving targets using differential geometry

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

This research is concerned with coordinated standoff tracking, and a guidance law against a moving target is proposed by using differential geometry. We first present the geometry between the unmanned aircraft (UA) and the target to obtain the convergent solution of standoff tracking when the speed ratio of the UA to the target is larger than one. Then, the convergent solution is used to guide the UA onto the standoff tracking geometry. We propose an improved guidance law by adding a derivative term to the relevant algorithm. To keep the phase angle difference of multiple UAs, we add a second derivative term to the relevant control law. Simulations are done to demonstrate the feasibility and performance of the proposed approach. The proposed algorithm can achieve coordinated control of multiple UAs with its simplicity and stability in terms of the standoff distance and phase angle difference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acevedo, J.J., Arrue, B.C., Maza, I., et al., 2013. Cooperative large area surveillance with a team of aerial mobile robots for long endurance missions. J. Intell. Robot. Syst., 70(1–4):329–345. [doi:10.1007/s10846-012-9716-3]

    Article  Google Scholar 

  • Chen, H., Chang, K., Agate, C.S., 2013. UAV path planning with tangent-plus-Lyapunov vector field guidance and obstacle avoidance. IEEE Trans. Aerosp. Electron. Syst., 49(2):840–856. [doi:10.1109/TAES.2013.6494384]

    Article  Google Scholar 

  • Forsmo, E.J., Grotli, E.I., Fossen, T.I., et al., 2013. Optimal search mission with unmanned aerial vehicles using mixed integer linear programming. Int. Conf. on Unmanned Aircraft Systems, p.253–259. [doi:10.1109/ICUAS.2013.6564697]

    Google Scholar 

  • Frew, E.W., Lawrence, D.A., Morris, S., 2008. Coordinated standoff tracking of moving targets using Lyapunov guidance vector fields. J. Guid. Contr. Dynam., 31(2): 290–306.

    Article  Google Scholar 

  • Griffiths, S.R., 2006. Remote Terrain Navigation for Unmanned Air Vehicles. MS Thesis, Brigham Young University, Utah, USA.

    Google Scholar 

  • Kim, S., Oh, H., Tsourdos, A., 2013. Nonlinear model predictive coordinated standoff tracking of a moving ground vehicle. J. Guid. Contr. Dynam., 36(2):557–566. [doi:10.2514/1.56254]

    Article  Google Scholar 

  • Lawrence, D.A., 2003. Lyapunov vector fields for UAV flock coordination. 2nd AIAA Unmanned Unlimited Conf., Workshop, and Exhibit, p.1–8. [doi:10.2514/6.2003-6575]

    Google Scholar 

  • Lawrence, D.A., Frew, E.W., Pisano, W.J., 2008. Lyapunov vector fields for autonomous unmanned aircraft flight control. J. Guid. Contr. Dynam., 31(5):1220–1229. [doi:10.2514/1.34896]

    Article  Google Scholar 

  • Li, Y., Ang, K.H., Chong, G.C.Y., 2006. PID control system analysis and design. IEEE Contr. Syst., 26(1):32–41. [doi:10.1109/MCS.2006.1580152]

    Article  Google Scholar 

  • Lim, S., Kim, Y., Lee, D., et al., 2013. Standoff target tracking using a vector field for multiple unmanned aircrafts. J. Intell. Robot. Syst., 69(1–4):347–360. [doi:10.1007/s10846-012-9765-7]

    Article  Google Scholar 

  • Nelson, D.R., Barber, D.B., McLain, T.W., et al., 2007. Vector field path following for miniature air vehicles. IEEE Trans. Robot., 23(3):519–529. [doi:10.1109/TRO.2007.898976]

    Article  Google Scholar 

  • Nigam, N., Bieniawski, S., Kroo, I., et al., 2012. Control of multiple UAVs for persistent surveillance: algorithm and flight test results. IEEE Trans. Contr. Syst. Technol., 20(5):1236–1251. [doi:10.1109/TCST.2011.2167331]

    Article  Google Scholar 

  • Oh, H., Kim, S., Shin, H.S., et al., 2013. Rendezvous and standoff target tracking guidance using differential geometry. J. Intell. Robot. Syst., 69(1–4):389–405. [doi:10.1007/s10846-012-9751-0]

    Article  Google Scholar 

  • Ping, J.T.K., Ling, A.E., Quan, T.J., et al., 2012. Generic unmanned aerial vehicle (UAV) for civilian application. IEEE Conf. on Sustainable Utilization and Development in Engineering and Technology, p.289–294. [doi:10.1109/STUDENT.2012.6408421]

    Google Scholar 

  • Prevost, C.G., Theriault, O., Desbiens, A., et al., 2009. Receding horizon model-based predictive control for dynamic target tracking: a comparative study. AIAA Guidance, Navigation, and Control Conf., p.1–9. [doi:10.2514/6.2009-6268]

    Google Scholar 

  • Summers, T.H., Akella, M.R., Mears, M.J., 2009. Coordinated standoff tracking of moving targets: control laws and information architectures. J. Guid. Contr. Dynam., 32(1): 56–69. [doi:10.2514/1.37212]

    Article  Google Scholar 

  • White, B.A., Zbikowski, R., Tsourdos, A., 2007. Direct intercept guidance using differential geometry concepts. IEEE Trans. Aerosp. Electron. Syst., 43(3):899–919. [doi:10.1109/TAES.2007.4383582]

    Article  Google Scholar 

  • Wise, R.A., Rysdyk, R.T., 2006. UAV coordination for autonomous target tracking. Proc. AIAA Guidance, Navigation, and Control Conf., p.3210–3231. [doi:10.2514/6. 2006-6453]

    Google Scholar 

  • Zarea, M., Pognonec, G., Schmidt, C., et al., 2013. First steps in developing an automated aerial surveillance approach. J. Risk Res., 13(3–4):407–420. [doi:10.1080/13669877.2012.729520]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-xiong Li.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 61273327 and 71201076), the Key Pre-research Fund of the PLA General Armament Department (No. 9140A06050213BQX), and the Natural Science Foundation of Jiangsu Province, China (No. BK2011564)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, Zq., Li, Hx., Chen, Cl. et al. Coordinated standoff tracking of moving targets using differential geometry. J. Zhejiang Univ. - Sci. C 15, 284–292 (2014). https://doi.org/10.1631/jzus.C1300287

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1300287

Key words

CLC number

Navigation