Abstract
This research is concerned with coordinated standoff tracking, and a guidance law against a moving target is proposed by using differential geometry. We first present the geometry between the unmanned aircraft (UA) and the target to obtain the convergent solution of standoff tracking when the speed ratio of the UA to the target is larger than one. Then, the convergent solution is used to guide the UA onto the standoff tracking geometry. We propose an improved guidance law by adding a derivative term to the relevant algorithm. To keep the phase angle difference of multiple UAs, we add a second derivative term to the relevant control law. Simulations are done to demonstrate the feasibility and performance of the proposed approach. The proposed algorithm can achieve coordinated control of multiple UAs with its simplicity and stability in terms of the standoff distance and phase angle difference.
Similar content being viewed by others
References
Acevedo, J.J., Arrue, B.C., Maza, I., et al., 2013. Cooperative large area surveillance with a team of aerial mobile robots for long endurance missions. J. Intell. Robot. Syst., 70(1–4):329–345. [doi:10.1007/s10846-012-9716-3]
Chen, H., Chang, K., Agate, C.S., 2013. UAV path planning with tangent-plus-Lyapunov vector field guidance and obstacle avoidance. IEEE Trans. Aerosp. Electron. Syst., 49(2):840–856. [doi:10.1109/TAES.2013.6494384]
Forsmo, E.J., Grotli, E.I., Fossen, T.I., et al., 2013. Optimal search mission with unmanned aerial vehicles using mixed integer linear programming. Int. Conf. on Unmanned Aircraft Systems, p.253–259. [doi:10.1109/ICUAS.2013.6564697]
Frew, E.W., Lawrence, D.A., Morris, S., 2008. Coordinated standoff tracking of moving targets using Lyapunov guidance vector fields. J. Guid. Contr. Dynam., 31(2): 290–306.
Griffiths, S.R., 2006. Remote Terrain Navigation for Unmanned Air Vehicles. MS Thesis, Brigham Young University, Utah, USA.
Kim, S., Oh, H., Tsourdos, A., 2013. Nonlinear model predictive coordinated standoff tracking of a moving ground vehicle. J. Guid. Contr. Dynam., 36(2):557–566. [doi:10.2514/1.56254]
Lawrence, D.A., 2003. Lyapunov vector fields for UAV flock coordination. 2nd AIAA Unmanned Unlimited Conf., Workshop, and Exhibit, p.1–8. [doi:10.2514/6.2003-6575]
Lawrence, D.A., Frew, E.W., Pisano, W.J., 2008. Lyapunov vector fields for autonomous unmanned aircraft flight control. J. Guid. Contr. Dynam., 31(5):1220–1229. [doi:10.2514/1.34896]
Li, Y., Ang, K.H., Chong, G.C.Y., 2006. PID control system analysis and design. IEEE Contr. Syst., 26(1):32–41. [doi:10.1109/MCS.2006.1580152]
Lim, S., Kim, Y., Lee, D., et al., 2013. Standoff target tracking using a vector field for multiple unmanned aircrafts. J. Intell. Robot. Syst., 69(1–4):347–360. [doi:10.1007/s10846-012-9765-7]
Nelson, D.R., Barber, D.B., McLain, T.W., et al., 2007. Vector field path following for miniature air vehicles. IEEE Trans. Robot., 23(3):519–529. [doi:10.1109/TRO.2007.898976]
Nigam, N., Bieniawski, S., Kroo, I., et al., 2012. Control of multiple UAVs for persistent surveillance: algorithm and flight test results. IEEE Trans. Contr. Syst. Technol., 20(5):1236–1251. [doi:10.1109/TCST.2011.2167331]
Oh, H., Kim, S., Shin, H.S., et al., 2013. Rendezvous and standoff target tracking guidance using differential geometry. J. Intell. Robot. Syst., 69(1–4):389–405. [doi:10.1007/s10846-012-9751-0]
Ping, J.T.K., Ling, A.E., Quan, T.J., et al., 2012. Generic unmanned aerial vehicle (UAV) for civilian application. IEEE Conf. on Sustainable Utilization and Development in Engineering and Technology, p.289–294. [doi:10.1109/STUDENT.2012.6408421]
Prevost, C.G., Theriault, O., Desbiens, A., et al., 2009. Receding horizon model-based predictive control for dynamic target tracking: a comparative study. AIAA Guidance, Navigation, and Control Conf., p.1–9. [doi:10.2514/6.2009-6268]
Summers, T.H., Akella, M.R., Mears, M.J., 2009. Coordinated standoff tracking of moving targets: control laws and information architectures. J. Guid. Contr. Dynam., 32(1): 56–69. [doi:10.2514/1.37212]
White, B.A., Zbikowski, R., Tsourdos, A., 2007. Direct intercept guidance using differential geometry concepts. IEEE Trans. Aerosp. Electron. Syst., 43(3):899–919. [doi:10.1109/TAES.2007.4383582]
Wise, R.A., Rysdyk, R.T., 2006. UAV coordination for autonomous target tracking. Proc. AIAA Guidance, Navigation, and Control Conf., p.3210–3231. [doi:10.2514/6. 2006-6453]
Zarea, M., Pognonec, G., Schmidt, C., et al., 2013. First steps in developing an automated aerial surveillance approach. J. Risk Res., 13(3–4):407–420. [doi:10.1080/13669877.2012.729520]
Author information
Authors and Affiliations
Corresponding author
Additional information
Project supported by the National Natural Science Foundation of China (Nos. 61273327 and 71201076), the Key Pre-research Fund of the PLA General Armament Department (No. 9140A06050213BQX), and the Natural Science Foundation of Jiangsu Province, China (No. BK2011564)
Rights and permissions
About this article
Cite this article
Song, Zq., Li, Hx., Chen, Cl. et al. Coordinated standoff tracking of moving targets using differential geometry. J. Zhejiang Univ. - Sci. C 15, 284–292 (2014). https://doi.org/10.1631/jzus.C1300287
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1631/jzus.C1300287