[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A multi-paradigm decision modeling framework for combat system effectiveness measurement based on domain-specific modeling

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

Decision modeling is an essential part of the combat system effectiveness simulation (CoSES), which needs to cope with the cognitive quality, diversity, flexibility, and higher abstraction of decision making. In this paper, a multi-paradigm decision modeling framework is proposed to support decision modeling at three levels of abstraction based on domain-specific modeling (DSM). This framework designs a domain-specific modeling language (DSML) for decision modeling to raise the abstraction level of modeling, transforms the domain-specific models to formalism-based models to enable formal analysis and early verification and validation, and implements the semantics of the DSML based on a Python scripts framework which incorporates the decision model into the whole simulation system. The case study shows that the proposed approach incorporates domain expertise and facilitates domain modeler’s participation in CoSES to formulate the problem using DSML in the problem domain, and enables formal analysis and automatic implementation of the decision model in the solution domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balasubramanian, D., Narayanan, A., van Buskirk, C., Karsai, G., 2006. The Graph Rewriting and Transformation Language: GReAT. Proc. 3rd Int. Workshop on Graph Based Tools, 1:1–8.

    Google Scholar 

  • Chen, K., Sztipanovits, J., Neema, S., 2005. Toward a Semantic Anchoring Infrastructure for Domain-Specific Modeling Languages. Proc. 5th ACM Int. Conf. on Embedded Software, p.35–43. [doi:10.1145/1086228.1086236]

    Chapter  Google Scholar 

  • Davis, J., 2003. GME: the Generic Modeling Environment. Proc. 18th Annual ACM SIGPLAN Conf. on Objectoriented Programming, Systems, Languages, and Applications, p.82–83.

    Google Scholar 

  • Davis, P.K., Bigelow, J.H., 1998. Experiments in Multiresolution Modeling (MRM). RAND Co., Santa Monica, CA.

    Google Scholar 

  • Ferayorni, A.E., Sarjoughian, H.S., 2007. Domain Driven Simulation Modeling for Software Design. Proc. 2007 Summer Computer Simulation Conf., p.297–304.

    Google Scholar 

  • France, R., Rumpe, B., 2005. Domain specific modeling. Softw. Syst. Model., 4(1):1–3. [doi:10.1007/s10270-005-0078-1]

    Article  Google Scholar 

  • Hemingway, G., Neema, H., Nine, H., Sztipanovits, J., Karsai, G., 2012. Rapid synthesis of high-level architecture-based heterogeneous simulation: a model-based integration approach. Simulation, 88(2):217–232. [doi:10.1177/0037549711401950]

    Article  Google Scholar 

  • Li, F., Shen, X., 2010. A component-based aircraft instrument rapid modeling tool. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 11(11):911–918. [doi: 10.1631/jzus.C1001010]

    Article  MathSciNet  Google Scholar 

  • Li, Q., Lei, Y., Hou, H., Wang, W., 2010. Simulation Model Portability Standard 2 and Its Application. Publishing House of Electronics Industry, Beijing, China, p.344 (in Chinese).

    Google Scholar 

  • Li, X., Lei, Y., Vangheluwe, H., Wang, W., Li, Q., 2011. Towards a DSM-based Framework for the Development of Complex Simulation Systems. Proc. 2011 Summer Computer Simulation Conf., p.210–215.

    Google Scholar 

  • Li, X., Lei, Y., Vangheluwe, H., Wang, W., Li, Q., 2013. Domain specific decision modelling and statistical analysis for combat system effectiveness simulation. J. Stat. Comput. Simul., in press. [doi:10.1080/00949655.2013.797421]

    Google Scholar 

  • Liu, H., Shi, Z., 2010. Intelligent Decision-Making Modeling Based on Object-Oriented Bayesian Network. Proc. 3rd Int. Conf. on Information and Computing, p.300–303. [doi:10.1109/ICIC.2010.347]

    Google Scholar 

  • Liu, L., 2007. Research on Modeling Fleet Cooperation Decision-Making System Based on Colored Petri Net. Master Thesis, Xidian University, Xi’an, China (in Chinese).

    Google Scholar 

  • Mittal, S., Douglass, S.A., 2011. From Domain Specific Languages to DEVS Components: Application to Cognitive M&S. Proc. Symp. on Theory of Modeling & Simulation: DEVS Integrative M&S Symp., p.256–265.

    Google Scholar 

  • Mittal, S., Risco-Martín, J.L., Zeigler, B.P., 2007. DEVSML: Automating DEVS Execution over SOA Towards Transparent Simulators. DEVS Integrative M&S Symp., p.1–9.

    Google Scholar 

  • Mosterman, P.J., Vangheluwe, H., 2004. Computer automated multi-paradigm modeling: an introduction. Simulation, 80(9):432–450. [doi:10.1177/0037549704050532]

    Article  Google Scholar 

  • Murata, T., 1989. Petri nets: properties, analysis and applications. Proc. IEEE, 77(4):541–580. [doi:10.1109/5.24143]

    Article  Google Scholar 

  • Neema, H., Nine, H., Hemingway, G., Sztipanovits, J., Karsai, G., 2009. Rapid Synthesis of Multi-model Simulations for Computational Experiments in C2. Armed Forces Communications and Electronics Association-George Mason University Symp.

    Google Scholar 

  • Ratzer, A.V., Wells, L., Lassen, H.M., Laursen, M., Qvortrup, J.F., Stissing, M.S., Westergaard, M., Christensen, S., Jensen, K., 2003. CPN tools for editing, simulating, and analysing coloured Petri nets. LNCS, 2679:450–462. [doi:10.1007/3-540-44919-1_28]

    Google Scholar 

  • Sarjoughian, H., Huang, D., 2005. A Multi-formalism Modeling Composability Framework: Agent and Discrete-Event Models. 9th IEEE Int. Symp. on Distributed Simulation and Real-Time Applications, p.249–256. [doi:10.1109/DISTRA.2005.4]

    Chapter  Google Scholar 

  • Sarjoughian, H.S., Zeigler, B.P., 2000. DEVS and HLA: complementary paradigms for modeling and simulation? Simulation, 17(4):187–196.

    Google Scholar 

  • Seo, K.M., Song, H.S., Kwon, S.J., Kim, T.G., 2011. Measurement of effectiveness for an anti-torpedo combat system using a discrete event systems specification-based underwater warfare simulator. J. Def. Model. Simul., 8(3):157–171. [doi:10.1177/1548512910390245]

    Google Scholar 

  • Sokolowski, J.A., 2003. Enhanced decision modeling using multiagent system simulation. Simulation, 79(4):232–242. [doi:10.1177/0037549703038886]

    Article  MathSciNet  Google Scholar 

  • Son, M., Kim, T., 2012a. Torpedo evasion simulation of underwater vehicle using fuzzy-logic-based tactical decision making in script tactics manager. Expert Syst. Appl., 39(9): 7995–8012. [doi:10.1016/j.eswa.2012.01.113]

    Article  Google Scholar 

  • Son, M., Kim, T., 2012b. Maneuvering control simulation of underwater vehicle based on combined discrete-event and discrete-time modeling. Expert Syst. Appl., 39(17): 12992–13008. [doi:10.1016/j.eswa.2012.05.099]

    Article  MathSciNet  Google Scholar 

  • Son, M.J., Cho, D.Y., Kim, T., Lee, K.Y., Nah, Y.I., 2010. Modeling and simulation of target motion analysis for a submarine using a script-based tactics manager. Adv. Eng. Softw., 41(3):506–516. [doi:10.1016/j.advengsoft.2009.10.009]

    Article  Google Scholar 

  • Sprinkle, J., Rumpe, B., Vangheluwe, H., Karsai, G., 2011. 3 Metamodelling. LNCS, 6100:57–76. [doi:10.1007/978-3-642-16277-0_3]

    Google Scholar 

  • US Army Space and Missile Defense Command, 2012. EADSIM Executive Summary. Available from http://www.eadsim.com/EADSIMExecSum.pdf/ [Accessed on Apr. 21, 2013].

    Google Scholar 

  • Verbraeck, A., Valentin, E.C., 2008. Design Guidelines for Simulation Building Blocks. Proc. Winter Simulation Conf., p.923–932.

    Google Scholar 

  • Walter, T., Ebert, J., 2009. Combining DSLs and Ontologies Using Metamodel Integration. Proc. Working Conf. of Domain-specific Languages, p.148–169.

    Chapter  Google Scholar 

  • Wang, W., Wang, W., Zander, J., Zhu, Y., 2009. Threedimensional conceptual model for service-oriented simulation. J. Zhejiang Univ.-Sci. A, 10(8):1075–1081. [doi: 10.1631/jzus.A0920258]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-bo Li.

Additional information

Project (Nos. 61273198, 91024015, 61074107, 60974073, 60974074, and 71031007) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Xb., Lei, Yl., Vangheluwe, H. et al. A multi-paradigm decision modeling framework for combat system effectiveness measurement based on domain-specific modeling. J. Zhejiang Univ. - Sci. C 14, 311–331 (2013). https://doi.org/10.1631/jzus.C1200374

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1200374

Key words

CLC number

Navigation