[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Synthesizing style-preserving cartoons via non-negative style factorization

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

We present a complete framework for synthesizing style-preserving 2D cartoons by learning from traditional Chinese cartoons. In contrast to reusing-based approaches which rely on rearranging or retrieving existing cartoon sequences, we aim to generate stylized cartoons with the idea of style factorization. Specifically, starting with 2D skeleton features of cartoon characters extracted by an improved rotoscoping system, we present a non-negative style factorization (NNSF) algorithm to obtain style basis and weights and simultaneously preserve class separability. Thus, factorized style basis can be combined with heterogeneous weights to re-synthesize style-preserving features, and then these features are used as the driving source in the character reshaping process via our proposed subkey-driving strategy. Extensive experiments and examples demonstrate the effectiveness of the proposed framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarwala, A., Hertzmann, A., Salesin, D.H., Seitz, S.M., 2004. Keyframe-based tracking for rotoscoping and animation. ACM Trans. Graph., 23(3):584–591. [doi:10.1145/1015706.1015764]

    Article  Google Scholar 

  • Aharon, M., Elad, M., Bruckstein, A., 2006. K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process., 54(11):4311–4322. [doi:10.1109/TSP.2006.881199]

    Article  Google Scholar 

  • Alexa, M., Cohen-Or, D., Levin, D., 2000. As-Rigid-as-Possible Shape Interpolation. Proc. SIGGRAPH, p.157–164. [doi:10.1145/344779.344859]

  • Brand, M., Hertzmann, A., 2000. Style Machines. Proc. SIGGRAPH, p.183–192. [doi:10.1145/344779.344865]

  • Bregler, C., Loeb, L., Chuang, E., Deshpande, H., 2002. Turning to the masters: motion capturing cartoons. ACM Trans. Graph., 21(3):399–407. [doi:10.1145/566654.566595]

    Article  Google Scholar 

  • Chenney, S., Pingel, M., Iverson, R., Szymanski, M., 2002. Simulating Cartoon Style Animation. Proc. NPAR, p.133–138. [doi:10.1145/508530.508553]

  • Freifeld, O., Weiss, A., Zuffi, S., Black, M.J., 2010. Contour People: a Parameterized Model of 2D Articulated Human Shape. Proc. CVPR, p.639–646. [doi:10.1109/CVPR.2010.5540154]

  • Guan, P., Freifeld, O., Black, M., 2010. A 2D Human Body Model Dressed in Eigen Clothing. Proc. ECCV, p.285–298.

  • Hoch, M., Litwinowicz, P.C., 1996. A semi-automatic system for edge tracking with snakes. Vis. Comput., 12(2):75–83. [doi:10.1007/s003710050049]

    Google Scholar 

  • Hornung, A., Dekkers, E., Kobbelt, L., 2007. Character animation from 2D pictures and 3D motion data. ACM Trans. Graph., 26(1):1–es. [doi:10.1145/1189762.1189763]

    Article  Google Scholar 

  • Hoyer, P.O., 2002. Non-negative Sparse Coding. Proc. 12th IEEE Workshop on Neural Networks for Signal Processing, p.557–565. [doi:10.1109/NNSP.2002.1030067]

  • Hsu, E., Pulli, K., Popović, J., 2005. Style translation for human motion. ACM Trans. Graph., 24(3):1082–1089. [doi:10.1145/1073204.1073315]

    Article  Google Scholar 

  • Igarashi, T., Moscovich, T., Hughes, J.F., 2005. As-rigid-as-possible shape manipulation. ACM Trans. Graph., 24(3): 1134–1141. [doi:10.1145/1073204.1073323]

    Article  Google Scholar 

  • Jonker, R., Volgenant, A., 1987. A shortest augmenting path algorithm for dense and sparse linear assignment problems. Computing, 38(4):325–340. [doi:10.1007/BF02278710]

    Article  MathSciNet  MATH  Google Scholar 

  • Kuo, P., Makris, D., Megherbi, N., Nebel, J.C., 2008. Integration of local image cues for probabilistic 2D pose recovery. LNCS, 5359:214–223. [doi:10.1007/978-3-540-89646-3_21]

    Google Scholar 

  • Kwon, J., Lee, I.K., 2008. Exaggerating character motions using sub-joint hierarchy. Comput. Graph. Forum, 27(6): 1677–1686. [doi:10.1111/j.1467-8659.2008.01177.x]

    Article  MathSciNet  MATH  Google Scholar 

  • Lau, M., Chai, J., Xu, Y.Q., Shum, H.Y., 2009. Face poser: interactive modeling of 3D facial expressions using facial priors. ACM Trans. Graph., 29(1):1–17. [doi:10.1145/1640443.1640446]

    Article  Google Scholar 

  • Lee, D.D., Seung, H.S., 2001. Algorithms for Non-negative Matrix Factorization. Proc. NIPS, 13:556–562.

    Google Scholar 

  • Li, Y., Gleicher, M., Xu, Y.Q., Shum, H.Y., 2003. Stylizing Motion with Drawings. Proc. SCA, p.309–319.

  • Ma, X., Le, B.H., Deng, Z., 2009. Style Learning and Transferring for Facial Animation Editing. Proc. SCA, p.123–132. [doi:10.1145/1599470.1599486]

  • Moeslund, T.B., Hilton, A., Krüger, V., 2006. A survey of advances in vision-based human motion capture and analysis. Comput. Vis. Image Understand., 104(2–3):90–126. [doi:10.1016/j.cviu.2006.08.002]

    Article  Google Scholar 

  • Pullen, K., Bregler, C., 2002. Motion capture assisted animation: texturing and synthesis. ACM Trans. Graph., 21(3): 501–508. [doi:10.1145/566654.566608]

    Article  Google Scholar 

  • Rogez, G., Orrite-Uruñuela, C., Martínez-del-Rincón, J., 2008. A spatio-temporal 2D-models framework for human pose recovery in monocular sequences. Pattern Recogn., 41(9):2926–2944. [doi:10.1016/j.patcog.2008.02.012]

    Article  MATH  Google Scholar 

  • Schaefer, S., McPhail, T., Warren, J., 2006. Image deformation using moving least squares. ACM Trans. Graph., 25(3): 533–540. [doi:10.1145/1141911.1141920]

    Article  Google Scholar 

  • Sýkora, D., Sedlacek, D., Jinchao, S., Dingliana, J., Collins, S., 2010. Adding depth to cartoons using sparse depth (in)equalities. Comput. Graph. Forum, 29(2):615–623. [doi:10.1111/j.1467-8659.2009.01631.x]

    Article  Google Scholar 

  • Tenenbaum, J.B., Freeman, W.T., 2000. Separating style and content with bilinear models. Neur. Comput., 12(6): 1247–1283. [doi:10.1162/089976600300015349]

    Article  Google Scholar 

  • Tenenbaum, J.B., Silva, V., Langford, J.C., 2000. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319–2323. [doi:10.1126/science.290.5500.2319]

    Article  Google Scholar 

  • Torresani, L., Hackney, P., Bregler, C., 2007. Learning Motion Style Synthesis from Perceptual Observations. Proc. NIPS, 19:1393–1400.

    Google Scholar 

  • Wang, H., Li, H., 2002. Cartoon Motion Capture by Shape Matching. Proc. Conf. on Computer Graphics and Applications, p.454–456.

  • Wang, J., Drucker, S.M., Agrawala, M., Cohen, M.F., 2006. The cartoon animation filter. ACM Trans. Graph., 25(3): 1169–1173. [doi:10.1145/1141911.1142010]

    Article  Google Scholar 

  • Wang, J.M., Fleet, D.J., Hertzmann, A., 2007. Multifactor Gaussian Process Models for Style-Content Separation. Proc. ICML, p.975–982. [doi:10.1145/1273496.1273619]

  • Weng, Y., Xu, W., Wu, Y., Zhou, K., Guo, B., 2006. 2D shape deformation using nonlinear least squares optimization. Vis. Comput., 22(9–11):653–660. [doi:10.1007/s00371-006-0054-y]

    Article  Google Scholar 

  • Yan, H.B., Hu, S., Martin, R.R., Yang, Y.L., 2008. Shape deformation using a skeleton to drive simplex transformations. IEEE Trans. Visual. Comput. Graph., 14(3):693–706. [doi:10.1109/TVCG.2008.28]

    Article  Google Scholar 

  • Yang, Y., Zhuang, Y., Xu, D., Pan, Y., Tao, D., Maybank, S., 2009. Retrieval Based Interactive Cartoon Synthesis via Unsupervised Bi-distance Metric Learning. Proc. Conf. on Multimedia, p.311–320. [doi:10.1145/1631272.1631316]

  • Zhou, S., Fu, H., Liu, L., Cohen-Or, D., Han, X., 2010. Parametric Reshaping of Human Bodies in Images. Proc. SIGGRAPH, p.1–10. [doi:10.1145/1778765.1778863]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Xiao.

Additional information

Project supported by the National Basic Research Program (973) of China (No. 2012CB316400), the National Natural Science Foundation of China (No. 60903134), and the Natural Science Foundation of Zhejiang Province, China (No. Y1101129)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, Z., Xiao, J. & Zhuang, Yt. Synthesizing style-preserving cartoons via non-negative style factorization. J. Zhejiang Univ. - Sci. C 13, 196–207 (2012). https://doi.org/10.1631/jzus.C1100202

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1100202

Key words

CLC number

Navigation