[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Application of artificial neural network for switching loss modeling in power IGBTs

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

The modeling of switching loss in semiconductor power devices is important in practice for the prediction and evaluation of thermal safety and system reliability. Both simulation-based behavioral models and data processing-based empirical models are difficult and have limited applications. Although the artificial neural network (ANN) algorithm has often been used for modeling, it has never been used for modeling insulated gate bipolar transistor (IGBT) transient loss. In this paper, we attempt to use the ANN method for this purpose, using a customized switching loss test bench. We compare its performance with two conventional curve-fitting models and verify the results by experiment. Our model is generally superior in calculation speed, accuracy, and data requirement, and is also able to be extended to loss modeling for all kinds of semiconductor power devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bazzi, A.M., Kimball, J.W., Kepley, K., Krein, P.T., 2009. TILAS: a Simple Analysis Tool for Estimating Power Losses in an IGBT-Diode Pair under Hysteresis Control in Three-Phase Inverters. 24th Annual Applied Power Electronics Conf. and Exposition, p.637–641. [doi:10.1109/APEC.2009.4802726]

  • Blaabjerg, F., Pedersen, J.K., Sigurjónsson, S., Elkjær, A., 1996. An Extended Model of Power Losses in Hard-Switched IGBT-Inverters. Proc. IEEE Industry Applications Conf., p.1454–1463. [doi:10.1109/IAS.1996.559258]

  • Bryant, A.T., Lu, L., Santi, E., Hudgins, J.L., Palmer, P.R., 2008. Modeling of IGBT Resistive and Inductive Turn-on Behavior. IEEE Trans. Ind. Appl., 44(3):904–914. [doi:10.1109/TIA.2008.921384]

    Article  Google Scholar 

  • Cavalcanti, M.C., da Silva, E.R., Jacobina, C.B., Boroyevich, D., Dong, W., 2003. Comparative Evaluation of Losses in Soft and Hard-Switched Inverters. 38th Industry Applications Conf. Annual Meeting, 3:1912–1917.

    Google Scholar 

  • Hefner, A.R.Jr., 1994. A dynamic electro-thermal model for the IGBT. IEEE Trans. Ind. Appl., 30(2):394–405. [doi:10.1109/28.287517]

    Article  Google Scholar 

  • Hefner, A.R.Jr., Diebolt, D.M., 1994. An experimentally verified IGBT model implemented in the Saber circuit simulator. IEEE Trans. Power Electron., 9(5):532–542. [doi:10.1109/63.321038]

    Article  Google Scholar 

  • Hu, W., Wen, X., Wen, H., Liu, J., 2008. Research on Loss Model and Junction Temperature of IGBT for Electric Vehicles Using PSPICE. Int. Conf. on Electrical Machines and Systems, p.4123–4126.

  • Kraus, R., Türkes, P., Sigg, J., 1998. Physics-Based Models of Power Semiconductor Devices for the Circuit Simulator SPICE. Power Electronic Specialists’ Conf., 2:1726–1731. [doi:10.1109/PESC.1998.703414]

    Google Scholar 

  • Michel, L., Cheriti, A., Sicard, P., 2009. Development of an Efficient IGBT Simulation Model. Canadian Conf. on Electrical and Computer Engineering, p.252–256. [doi:10.1109/CCECE.2009.5090131]

  • Poulsen, B., Sørensen, M.B., 2004. Modelling and Test of Power Semiconductors. Master Thesis, Aalborg University, Denmark.

    Google Scholar 

  • Rosu, M., Wu, X., Cendes, Z., Aurich, J., Hornkamp, M., 2008. A Novel Electrothermal IGBT Modeling Approach for Circuit Simulation Design. IEEE 23rd Annual Applied Power Electronics Conf. and Exposition, p.1685–1689. [doi:10.1109/APEC.2008.4522953]

  • Shen, Y., Xiong, Y., Jiang, J., Deng, Y., He, X., Zeng, Z., 2006a. Parasitic Inductance Effects on the Switching Loss Measurement of Power Semiconductor Devices. IEEE Int. Symp. on Industrial Electronics, 2:847–852. [doi:10.1109/ISIE.2006.295745]

    Article  Google Scholar 

  • Shen, Y., Xiong, Y., Jiang, J., Deng, Y., He, X., Zeng, Z., 2006b. Switching Loss Analysis and Modeling of Power Semiconductor Devices Based on an Automatic Measurement System. IEEE Int. Symp. on Industrial Electronics, 2:853–858. [doi:10.1109/ISIE.2006.295746]

    Article  Google Scholar 

  • Sheng, K., Finney, S.J., Williams, B.W., 1999. A new analytical IGBT model with improved electrical characteristics. IEEE Trans. Power Electron., 14(1):98–107. [doi:10.1109/63.737597]

    Article  Google Scholar 

  • Sheng, K., Williams, B.W., Finney, S.J., 2000. A review of IGBT models. IEEE Trans. Power Electron., 15(6):1250–1266. [doi:10.1109/63.892840]

    Article  Google Scholar 

  • Xu, D.W., Lu, H.W., Huang, L.P., Azuma, S., Kimata, M., Uchida, R., 2002. Power loss and junction temperature analysis of power semiconductor devices. IEEE Trans. Ind. Appl., 38(5):1426–1431. [doi:10.1109/TIA.2002.802995]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Deng.

Additional information

Project supported by the Power Electronics Science and Education Development Program of Delta Environmental & Educational Foundation (No. DREO2006022) and the National Natural Science Foundation of China (No. 50737002)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, Y., He, Xn., Zhao, J. et al. Application of artificial neural network for switching loss modeling in power IGBTs. J. Zhejiang Univ. - Sci. C 11, 435–443 (2010). https://doi.org/10.1631/jzus.C0910442

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C0910442

Key words

CLC number

Navigation