Abstract
This paper introduces a novel framework, i.e., RFPose-OT, to enable three-dimensional (3D) human pose estimation from radio frequency (RF) signals. Different from existing methods that predict human poses from RF signals at the signal level directly, we consider the structure difference between the RF signals and the human poses, propose a transformation of the RF signals to the pose domain at the feature level based on the optimal transport (OT) theory, and generate human poses from the transformed features. To evaluate RFPose-OT, we build a radio system and a multi-view camera system to acquire the RF signal data and the ground-truth human poses. The experimental results in a basic indoor environment, an occlusion indoor environment, and an outdoor environment demonstrate that RFPose-OT can predict 3D human poses with higher precision than state-of-the-art methods.
摘要
本文提出一个新颖的RFPose-OT模型框架以实现从无线射频信号中估计三维人体姿态. 与现有直接从射频信号中预测人体姿态方法不同, 本文考虑射频信号与人体姿态之间的结构特征差异, 提出基于最优传输理论在特征空间上将射频信号变换到人体姿态域, 再根据变换后的特征预测人体姿态. 为评估RFPose-OT模型, 本文构建了一个无线电系统和一个多视角相机系统获取无线信号数据以及真实的人体姿态标签. 在室内基本环境、室内遮挡环境以及室外环境中的实验结果表明, RFPose-OT模型能精确地估计三维人体姿态, 优于现有方法.
Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
Bonneel N, van de Panne M, Paris S, et al., 2011. Displacement interpolation using Lagrangian mass transport. Proc SIGGRAPH Asia Conf, p.1–12. https://doi.org/10.1145/2024156.2024192
Cao Z, Simon T, Wei SE, et al., 2017. Realtime multi-person 2D pose estimation using part affinity fields. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.7291–7299. https://doi.org/10.1109/CVPR.2017.143
Chen JB, Zhang DH, Wu Z, et al., 2022. Contactless electrocardiogram monitoring with millimeter wave radar. IEEE Trans Mob Comput, early access. https://doi.org/10.1109/TMC.2022.3214721
Chen Y, Su X, Hu Y, et al., 2020. Residual carrier frequency offset estimation and compensation for commodity WiFi. IEEE Trans Mob Comput, 19(12):2891–2902. https://doi.org/10.1109/TMC.2019.2934106
Chen Y, Deng HY, Zhang DH, et al., 2021. SpeedNet: indoor speed estimation with radio signals. IEEE Int Things J, 8(4):2762–2774. https://doi.org/10.1109/JIOT.2020.3022071
Conte E, Filippi A, Tomasin S, 2010. Ml period estimation with application to vital sign monitoring. IEEE Signal Process Lett, 17(11):905–908. https://doi.org/10.1109/LSP.2010.2071382
Fang HS, Xie SQ, Tai YW, et al., 2017. RMPE: regional multi-person pose estimation. Proc IEEE Int Conf on Computer Vision, p.2334–2343. https://doi.org/10.1109/ICCV.2017.256
He KM, Gkioxari G, Dollár P, et al., 2017. Mask R-CNN. Proc IEEE Int Conf on Computer Vision, p.2961–2969. https://doi.org/10.1109/ICCV.2017.322
He Y, Chen Y, Hu Y, et al., 2020. WiFi vision: sensing, recognition, and detection with commodity MIMO-OFDM WiFi. IEEE Int Things J, 7(9):8296–8317. https://doi.org/10.1109/JIOT.2020.2989426
Hsu CY, Hristov R, Lee GH, et al., 2019. Enabling identification and behavioral sensing in homes using radio reflections. Proc CHI Conf on Human Factors in Computing Systems, p.1–13. https://doi.org/10.1145/3290605.3300778
Ito N, Godsill S, 2020. A multi-target track-before-detect particle filter using superpositional data in non-Gaussian noise. IEEE Signal Process Lett, 27:1075–1079. https://doi.org/10.1109/LSP.2020.3002704
Ji HR, Hou CP, Yang Y, et al., 2021. A one-class classification method for human gait authentication using micro-Doppler signatures. IEEE Signal Process Lett, 28:2182–2186. https://doi.org/10.1109/LSP.2021.3122344
Jiang WJ, Xue HF, Miao CL, et al., 2020. Towards 3D human pose construction using WiFi. Proc 26th Annual Int Conf on Mobile Computing and Networking, p.1–14. https://doi.org/10.1145/3372224.3380900
Kantorovich LV, 1942. On the translocation of masses. Dokl Akad Nauk USSR, 37:199–201 (in Russian).
Kim HI, Park RH, 2018. Residual LSTM attention network for object tracking. IEEE Signal Process Lett, 25(7):1029–1033. https://doi.org/10.1109/LSP.2018.2835768
Kotaru M, Joshi K, Bharadia D, et al., 2015. SpotFi: decimeter level localization using WiFi. Proc ACM Conf on Special Interest Group on Data Communication, p.269–282. https://doi.org/10.1145/2785956.2787487
LeCun Y, Bengio Y, Hinton G, 2015. Deep learning. Nature, 521(7553):436–444. https://doi.org/10.1038/nature14539
Li J, 2018. Cyber security meets artificial intelligence: a survey. Front Inform Technol Electron Eng, 19(12):1462–1474. https://doi.org/10.1631/FITEE.1800573
Li TH, Fan LJ, Zhao MM, et al., 2019. Making the invisible visible: action recognition through walls and occlusions. Proc IEEE/CVF Int Conf on Computer Vision, p.872–881. https://doi.org/10.1109/ICCV.2019.00096
Li YD, Zhang DH, Chen JB, et al., 2021. Towards domain-independent and real-time gesture recognition using mmWave signal. IEEE Trans Mob Comput, early access. https://doi.org/10.1109/TMC.2022.3207570
Liu SP, Tian GH, Cui YC, et al., 2022. A deep Q-learning network based active object detection model with a novel training algorithm for service robots. Front Inform Technol Electron Eng, 23(11):1673–1683. https://doi.org/10.1631/FITEE.2200109
Ma L, Zhong QY, Zhang YY, et al., 2021. Associative affinity network learning for multi-object tracking. Front Inform Technol Electron Eng, 22(9):1194–1206. https://doi.org/10.1631/FITEE.2000272
Majeed K, Sorour S, Al-Naffouri TY, et al., 2016. Indoor localization and radio map estimation using unsupervised manifold alignment with geometry perturbation. IEEE Trans Mob Comput, 15(11):2794–2808. https://doi.org/10.1109/TMC.2015.2510631
Martinez J, Hossain R, Romero J, et al., 2017. A simple yet effective baseline for 3D human pose estimation. Proc IEEE Int Conf on Computer Vision, p.2640–2649. https://doi.org/10.1109/ICCV.2017.288
Monge G, 1781. Mémoire sur la théorie des déblais et des remblais. Mémoires de Mathématique et de Physique, Presentés à l’Académie Royale des Sciences, p.666–704 (in French).
Niu K, Zhang FS, Wang XZ, et al., 2022. Understanding WiFi signal frequency features for position-independent gesture sensing. IEEE Trans Mob Comput, 21(11):4156–4171. https://doi.org/10.1109/TMC.2021.3063135
Patwari N, Wilson J, Ananthanarayanan S, et al., 2014. Monitoring breathing via signal strength in wireless networks. IEEE Trans Mob Comput, 13(8):1774–1786. https://doi.org/10.1109/TMC.2013.117
Qian K, Wu CS, Yang Z, et al., 2018. Enabling contactless detection of moving humans with dynamic speeds using CSI. ACM Trans Embed Comput Syst, 17(2):1–18. https://doi.org/10.1145/3157677
Qiu CR, Zhang DH, Hu Y, et al., 2022. Radio-assisted human detection. IEEE Trans Multim, 25:2613–2623. https://doi.org/10.1109/TMM.2022.3149129
Rampa V, Savazzi S, Nicoli M, et al., 2015. Physical modeling and performance bounds for device-free localization systems. IEEE Signal Process Lett, 22(11):1864–1868. https://doi.org/10.1109/LSP.2015.2438176
Sengupta A, Jin F, Zhang RY, et al., 2020. mm-Pose: real-time human skeletal posture estimation using mmWave radars and CNNs. IEEE Sens J, 20(17):10032–10044. https://doi.org/10.1109/JSEN.2020.2991741
Song RY, Zhang DH, Wu Z, et al., 2022. RF-URL: unsupervised representation learning for RF sensing. Proc 28th Annual Int Conf on Mobile Computing and Networking, p.282–295. https://doi.org/10.1145/3495243.3560529
Wang F, Zhou S, Panev S, et al., 2019. Person-in-WiFi: fine-grained person perception using WiFi. Proc IEEE/CVF Int Conf on Computer Vision, p.5452–5461. https://doi.org/10.1109/ICCV.2019.00555
Wang L, Sun K, Dai HP, et al., 2021. WiTrace: centimeter-level passive gesture tracking using OFDM signals. IEEE Trans Mob Comput, 20(4):1730–1745. https://doi.org/10.1109/TMC.2019.2961885
Wei SE, Ramakrishna V, Kanade T, et al., 2016. Convolutional pose machines. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.4724–4732. https://doi.org/10.1109/CVPR.2016.511
Wu Z, Zhang DH, Xie CY, et al., 2022. RFMask: a simple baseline for human silhouette segmentation with radio signals. IEEE Trans Multim, early access. https://doi.org/10.1109/TMM.2022.3181455
Xu XY, Yu JD, Chen YY, 2022. Leveraging acoustic signals for fine-grained breathing monitoring in driving environments. IEEE Trans Mob Comput, 21(3):1018–1033. https://doi.org/10.1109/TMC.2020.3015828
Yang Y, Zhuang YT, Pan YH, 2021. Multiple knowledge representation for big data artificial intelligence: framework, applications, and case studies. Front Inform Technol Electron Eng, 22(12):1551–1558. https://doi.org/10.1631/FITEE.2100463
Yu C, Wu Z, Zhang DH, et al., 2022. RFGAN: RF-based human synthesis. IEEE Trans Multim, 25:2926–2938. https://doi.org/10.1109/TMM.2022.3153136
Yue SC, He H, Wang H, et al., 2018. Extracting multiperson respiration from entangled RF signals. Proc ACM Interact Mob Wearab Ubiq Technol, 2(2):1–22. https://doi.org/10.1145/3214289
Zeng YZ, Pathak PH, Mohapatra P, 2016. WiWho: WiFi-based person identification in smart spaces. Proc 15th ACM/IEEE Int Conf on Information Processing in Sensor Networks, p.1–12. https://doi.org/10.1109/IPSN.2016.7460727
Zhang BB, Zhang DH, Li YD, et al., 2021. Unsupervised domain adaptation for device-free gesture recognition. https://arxiv.org/abs/2111.10602v1
Zhang DH, He Y, Gong XY, et al., 2018. Multitarget AOA estimation using wideband LFMCW signal and two receiver antennas. IEEE Trans Veh Technol, 67(8):7101–7112. https://doi.org/10.1109/TVT.2018.2827408
Zhang DH, Hu Y, Chen Y, et al., 2019. BreathTrack: tracking indoor human breath status via commodity WiFi. IEEE Int Things J, 6(2):3899–3911. https://doi.org/10.1109/JIOT.2019.2893330
Zhang DH, Hu Y, Chen Y, et al., 2020. Calibrating phase offsets for commodity WiFi. IEEE Syst J, 14(1):661–664. https://doi.org/10.1109/JSYST.2019.2904714
Zhang DH, Hu Y, Chen Y, 2021. MTrack: tracking multiperson moving trajectories and vital signs with radio signals. IEEE Int Things J, 8(5):3904–3914. https://doi.org/10.1109/JIOT.2020.3025820
Zhang F, Chen C, Wang BB, et al., 2018. WiSpeed: a statistical electromagnetic approach for device-free indoor speed estimation. IEEE Int Things J, 5(3):2163–2177. https://doi.org/10.1109/JIOT.2018.2826227
Zhang QS, Zhu SC, 2018. Visual interpretability for deep learning: a survey. Front Inform Technol Electron Eng, 19(1):27–39. https://doi.org/10.1631/FITEE.1700808
Zhang Z, 2000. A flexible new technique for camera calibration. IEEE Trans Patt Anal Mach Intell, 22(11):1330–1334. https://doi.org/10.1109/34.888718
Zhao MM, Yue SC, Katabi D, et al., 2017. Learning sleep stages from radio signals: a conditional adversarial architecture. Proc 34th Int Conf on Machine Learning, p.4100–4109.
Zhao MM, Tian YL, Zhao H, et al., 2018a. RF-based 3D skeletons. Proc Conf of the ACM Special Interest Group on Data Communication, p.267–281. https://doi.org/10.1145/3230543.3230579
Zhao MM, Li TH, Abu Alsheikh M, et al., 2018b. Through-wall human pose estimation using radio signals. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.7356–7365. https://doi.org/10.1109/CVPR.2018.00768
Zheng C, Zhu SJ, Mendieta M, et al., 2021. 3D human pose estimation with spatial and temporal transformers. Proc IEEE/CVF Int Conf on Computer Vision, p.11656–11665. https://doi.org/10.1109/ICCV48922.2021.01145
Zhou L, Chen YY, Gao YZ, et al., 2020. Occlusion-aware Siamese network for human pose estimation. Proc 16th European Conf on Computer Vision, p.396–412. https://doi.org/10.1007/978-3-030-58565-5_24
Author information
Authors and Affiliations
Contributions
Cong YU and Yan CHEN conceived the method. Cong YU designed and implemented the RFPose-OT model. Cong YU and Zhi LU performed the experiments and conducted the comparisons. Dongheng ZHANG, Zhi WU, and Chunyang XIE collected and processed the data. Cong YU drafted the paper. Yang HU and Yan CHEN helped organize the paper. Yan CHEN supervised all aspects of the project. All authors contributed to designing the experiments and revising and finalizing the paper.
Corresponding author
Ethics declarations
Cong YU, Dongheng ZHANG, Zhi WU, Zhi LU, Chunyang XIE, Yang HU, and Yan CHEN declare that they have no conflict of interest.
Additional information
Project supported by the National Natural Science Foundation of China (Nos. 62201542 and 62172381), the National Key R&D Programmes of China (Nos. 2022YFC2503405 and 2022YFC0869800), the Fellowship of China Postdoctoral Science Foundation (No. 2022M723069), and the Fundamental Research Funds for the Central Universities, China
Rights and permissions
About this article
Cite this article
Yu, C., Zhang, D., Wu, Z. et al. RFPose-OT: RF-based 3D human pose estimation via optimal transport theory. Front Inform Technol Electron Eng 24, 1445–1457 (2023). https://doi.org/10.1631/FITEE.2200550
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.2200550