Abstract
We demonstrate a graphene-metasurface structure for tunable wide-incident-angle terahertz wave absorption, which involves depositing planar arrays of Omega-shaped graphene patterns on a silicon dioxide substrate. We also discuss how the graphene Fermi-level layer and various substrates affect the absorption characteristics. The absorption of the proposed terahertz absorber is above 80% at an incident angle of 0°–60° in frequencies ranging from 0.82 to 2.0 THz. Our results will be very beneficial in the application of terahertz wave communications and biomedical imaging/sensing systems.
摘要
针对可调宽带宽入射角太赫兹波吸收器, 本文提出一种石墨烯超表面结构, 该结构在二氧化硅基底上沉积了按平面阵列分布的欧米伽型石墨烯图案. 讨论了石墨烯费米能级层和各种基底对吸收特性的影响. 在0.82–2.0 THz频率范围内, 当入射角为0°–60°时, 该太赫兹吸收器的吸收率超过80%. 本文研究成果将惠及太赫兹波通信和生物医学成像/传感系统的应用.
Similar content being viewed by others
References
Amin M, Farhat M, Bağcı H, 2013. An ultra-broadband multilayered graphene absorber. Opt Expr, 21(24):29938–29948. https://doi.org/10.1364/oe.21.029938
Bouchon P, Koechlin C, Pardo F, et al., 2012. Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas. Opt Lett, 37(6):1038–1040. https://doi.org/10.1364/OL.37.001038
Daraei OM, Goudarzi K, Bemani M, 2020. A tunable ultra-broadband terahertz absorber based on two layers of graphene ribbons. Opt Laser Technol, 122:105853. https://doi.org/10.1016/j.optlastec.2019.105853
Esquius-Morote M, Gómez-Díaz JS, Perruisseau-Carrier J, 2014. Sinusoidally modulated graphene leaky-wave antenna for electronic beamscanning at THz. IEEE Trans Terahertz Sci Technol, 4(1):116–122. https://doi.org/10.1109/TTHZ.2013.2294538
He XY, Liu F, Lin FT, et al., 2019. Investigation of terahertz all-dielectric metamaterials. Opt Expr, 27(10):13831–13844. https://doi.org/10.1364/OE.27.013831
He XY, Lin FT, Liu F, et al., 2020a. Investigation of phonon scattering on the tunable mechanisms of terahertz graphene metamaterials. Nanomaterials, 10(1):39. https://doi.org/10.3390/nano10010039
He XY, Lin FT, Liu F, et al., 2020b. Tunable strontium titanate terahertz all-dielectric metamaterials. J Phys D, 53(15):155105. https://doi.org/10.1088/1361-6463/ab6ccc
He YN, Zhang B, He T, et al., 2015. Optically-controlled metamaterial absorber based on hybrid structure. Opt Commun, 356:595–598. https://doi.org/10.1016/j.optcom.2015.08.070
Hu FR, Zou TB, Quan BG, et al., 2014. Polarization-dependent terahertz metamaterial absorber with high absorption in two orthogonal directions. Opt Commun, 332:321–326. https://doi.org/10.1016/j.optcom.2014.06.017
Jnawali G, Rao Y, Yan HG, et al., 2013. Observation of a transient decrease in terahertz conductivity of single-layer graphene induced by ultrafast optical excitation. Nano Lett, 13(2):524–530. https://doi.org/10.1021/n1303988q
Jo G, Choe M, Cho CY, et al., 2010. Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes. Nanotechnology, 21(17):175201. https://doi.org/10.1088/0957-4484/21/17/175201
Kim KS, Zhao Y, Jang H, et al., 2009. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457(7230):706–710. https://doi.org/10.1038/nature07719
Liu TT, Jiang XY, Zhou CB, et al., 2019a. Black phosphorus-based anisotropic absorption structure in the mid-infrared. Opt Expr, 27(20):27618–27627. https://doi.org/10.1364/OE.27.027618
Liu TT, Jiang XY, Wang HX, et al., 2019b. Tunable anisotropic absorption in monolayer black phosphorus using critical coupling. Appl Phys Expr, 13(1):012010. https://doi.org/10.7567/1882-0786/ab6270
Liu Y, Zhong RB, Huang JB, et al., 2019. Independently tunable multi-band and ultra-wide-band absorbers based on multilayer metal-graphene metamaterials. Opt Expr, 27(5):7393–7404. https://doi.org/10.1364/OE.27.007393
Long YF, Chen X, Cai GX, et al., 2018. Electrically tunable broadband terahertz absorption with hybrid-patterned graphene metasurfaces. Nanomaterials, 8(8):562. https://doi.org/10.3390/nano8080562
Othman MAK, Guclu C, Capolino F, 2013. Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption. Opt Expr, 21(6):7614–7632. https://doi.org/10.1364/OE.21.007614
Shi CYY, He XY, Peng J, et al., 2019. Tunable terahertz hybrid graphene-metal patterns metamaterials. Opt Laser Technol, 114:28–34. https://doi.org/10.1016/j.optlastec.2019.01.024
Song ZY, Jiang MW, Deng YD, et al., 2020. Wide-angle absorber with tunable intensity and bandwidth realized by a terahertz phase change material. Opt Commun, 464:125494. https://doi.org/10.1016/j.optcom.2020.125494
Su ZX, Yin JB, Zhao XP, 2015. Terahertz dual-band metamaterial absorber based on graphene/MgF2 multilayer structures. Opt Expr, 23(2):1679–1690. https://doi.org/10.1364/OE.23.001679
Xiao SY, Wang T, Liu YB, et al., 2016. Tunable light trapping and absorption enhancement with graphene ring arrays. Phys Chem Chem Phys, 18(38):26661–26669. https://doi.org/10.1039/c6cp03731c
Xiao SY, Liu TT, Cheng L, et al., 2019. Tunable anisotropic absorption in hyperbolic metamaterials based on black phosphorous/dielectric multilayer structures. J Lightw Technol, 37(13):3290–3297. https://doi.org/10.1109/JLT.2019.2914183
Zhang JF, Liu WB, Zhu ZH, et al., 2016. Towards nano-optical tweezers with graphene plasmons: numerical investigation of trapping 10-nm particles with mid-infrared light. Sci Rep, 6:38086. https://doi.org/10.1038/srep38086
Zhang Y, Feng YJ, Zhu B, et al., 2014. Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency. Opt Expr, 22(19):22743. https://doi.org/10.1364/OE.22.022743
Zhang YB, Tan YW, Stormer HL, et al., 2005. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature, 438(7065):201–204. https://doi.org/10.1038/nature04235
Zhou RY, Wang C, Xu WD, et al., 2019. Biological applications of terahertz technology based on nanomaterials and nanostructures. Nanoscale, 11(8):3445–3457. https://doi.org/10.1039/C8NR08676A
Author information
Authors and Affiliations
Contributions
Jiu-sheng LI designed the research. Ri-hui XIONG processed the data and drafted the manuscript. Xiao-qing PENG helped organize the manuscript. Jiu-sheng LI revised and finalized the paper.
Corresponding author
Ethics declarations
Ri-hui XIONG, Xiao-qing PENG, and Jiu-sheng LI declare that they have no conflict of interest.
Additional information
Project supported by the Zhejiang Lab (No. 2019LC0AB03)
Rights and permissions
About this article
Cite this article
Xiong, Rh., Peng, Xq. & Li, Js. Graphene-metasurface for wide-incident-angle terahertz absorption. Front Inform Technol Electron Eng 22, 334–340 (2021). https://doi.org/10.1631/FITEE.2000079
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.2000079