[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Model-free adaptive control for three-degree-of-freedom hybrid magnetic bearings

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Mathematical models are disappointing due to uneven distribution of the air gap magnetic field and significant unmodeled dynamics in magnetic bearing systems. The effectiveness of control deteriorates based on an inaccurate mathematical model, creating slow response speed and high jitter. To solve these problems, a model-free adaptive control (MFAC) scheme is proposed for a three-degree-of-freedom hybrid magnetic bearing (3-DoF HMB) control system. The scheme for 3-DoF HMB depends only on the control current and the objective balanced position, and it does not involve any model information. The design process of a parameter estimation algorithm is model-free, based directly on pseudo-partial-derivative (PPD) derived online from the input and output data information. The rotor start-of-suspension position of the HMB is regulated by auxiliary bearings with different inner diameters, and two kinds of operation situations (linear and nonlinear areas) are present to analyze the validity of MFAC in detail. Both simulations and experiments demonstrate that the proposed MFAC scheme handles the 3-DoF HMB control system with start-of-suspension response speed, smaller steady state error, and higher stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cao, X., Deng, Z.Q., 2010. A full-period generating mode for bearingless switched reluctance generators. IEEE Trans. Appl. Supercond., 20(3):1072–1076. https://doi.org/10.1109/TASC.2010.2041206

    Article  Google Scholar 

  • Casella, F., 2004. Modeling, simulation, control, and optimization of a geothermal power plant. IEEE Trans. Energy Conv., 19(1):170–178. https://doi.org/10.1109/TEC.2003.821823

    Article  Google Scholar 

  • Chen, L., Hofmann, W., 2012. Speed regulation technique of one bearingless 8/6 switched reluctance motor with simpler single winding structure. IEEE Trans. Ind. Electron., 59(6):2592–2600. https://doi.org/10.1109/TIE.2011.2163289

    Article  Google Scholar 

  • Chen, S.L., Weng, C.C., 2010. Robust control of a voltagecontrolled three-pole active magnetic bearing system. IEEE/ASME Trans. Mechatron., 15(3):381–388. https://doi.org/10.1109/TMECH.2009.2027015

    Article  Google Scholar 

  • Cimuca, G., Breban, S., Radulescu, M.M., et al., 2010. Design and control strategies of an induction-machine-based flywheel energy storage system associated to a variablespeed wind generator. IEEE Trans. Energy Conv., 25(2):526–534. https://doi.org/10.1109/TEC.2010.2045925

    Article  Google Scholar 

  • Fang, J.C., Sun, J.J., Liu, H., et al., 2010. A novel 3-DoF axial hybrid magnetic bearing. IEEE Trans. Magn., 46(12):4034–4045. https://doi.org/10.1109/TMAG.2010.2074206

    Article  Google Scholar 

  • Formentin, S., Savaresi, S.M., Del Re, L., 2012. Non-iterative direct data-driven controller tuning for multivariable systems: theory and application. IET Contr. Theory Appl., 6(9):1250–1257. https://doi.org/10.1049/iet-cta.2011.0204

    Article  MathSciNet  Google Scholar 

  • Han, B.C., Zheng, S.Q., Le, Y., et al., 2013. Modeling and analysis of coupling performance between passive magnetic bearing and hybrid magnetic radial bearing for magnetically suspended flywheel. IEEE Trans. Magn., 49(10):5356–5370. https://doi.org/10.1109/TMAG.2013.2263284

    Article  Google Scholar 

  • Hildebrand, R., Lecchini, A., Solari, G., et al., 2005. Asymptotic accuracy of iterative feedback tuning. IEEE Trans. Autom. Contr., 50(8):1182–1185. https://doi.org/10.1109/TAC.2005.852551

    Article  MathSciNet  Google Scholar 

  • Kang, M.S., Lyou, J., Lee, J.K., 2010. Sliding mode control for an active magnetic bearing system subject to base motion. Mechatronics, 20(1):171–178. https://doi.org/10.1016/j.mechatronics.2009.09.010

    Article  Google Scholar 

  • Lee, J., Jeong, S., Han, Y.H., et al., 2011. Concept of cold energy storage for superconducting flywheel energy storage system. IEEE Trans. Appl. Supercond., 21(3):2221–2224. https://doi.org/10.1109/TASC.2010.2094177

    Article  Google Scholar 

  • Mišković, L., Karimi, A., Bonvin, D., et al., 2007. Correlationbased tuning of decoupling multivariable controllers. Automatica, 43(9):1481–1494. https://doi.org/10.1016/j.automatica.2007.02.006

    Article  MathSciNet  Google Scholar 

  • Morrison, C.R., Siebert, M.W., Ho, E.J., 2008. Electromagnetic forces in a hybrid magnetic-bearing switchedreluctance motor. IEEE Trans. Magn., 44(12):4626–4638. https://doi.org/10.1109/TMAG.2008.2002891

    Article  Google Scholar 

  • O’Sullivan, D.L., Lewis, A.W., 2011. Generator selection and comparative performance in offshore oscillating water column ocean wave energy converters. IEEE Trans. Energy Conv., 26(2):603–614. https://doi.org/10.1109/TEC.2010.2093527

    Article  Google Scholar 

  • Sala, A., Esparza, A., 2005. Extensions to “virtual reference feedback tuning: a direct method for the design of feedback controllers”. Automatica, 41(8):1473–1476. https://doi.org/10.1016/j.automatica.2005.02.008

    Article  MathSciNet  Google Scholar 

  • Sarkar, S., Ajjarapu, V., 2011. MW resource assessment model for a hybrid energy conversion system with wind and solar resources. IEEE Trans. Sustain. Energy, 2(4):383–391. https://doi.org/10.1109/TSTE.2011.2148182

    Article  Google Scholar 

  • Subkhan, M., Komori, M., 2011. New concept for flywheel energy storage system using SMB and PMB. IEEE Trans. Appl. Supercond., 21(3):1485–1488. https://doi.org/10.1109/TASC.2010.2098470

    Article  Google Scholar 

  • Wakitani, S., Yamamoto, T., 2014. Design and application of a data-driven PID controller. Proc. IEEE Conf. on Control Applications, p.1443–1448. https://doi.org/10.1109/CCA.2014.6981527

    Google Scholar 

  • Wang, K., Wang, D., Lin, H.Y., et al., 2014. Analytical modeling of permanent magnet biased axial magnetic bearing with multiple air gaps. IEEE Trans. Magn., 50(11):1–4. https://doi.org/10.1109/TMAG.2014.2330843

    Google Scholar 

  • Wei, K.Y., Liu, D.Z., Meng, J., et al., 2010. Design and simulation of a 12-phase flywheel energy storage generator system with linearly dynamic load. IEEE Trans. Appl. Supercond., 20(3):1050–1054. https://doi.org/10.1109/TASC.2010.2040599

    Article  Google Scholar 

  • Xu, J.X., Hou, Z.S., 2009. Notes on data-driven system approaches. Acta Autom. Sin., 35(6):668–675. https://doi.org/10.1016/S1874-1029(08)60090-7

    Article  Google Scholar 

  • Yang, G., Deng, Z.Q., Cao, X., et al., 2008. Optimal winding arrangements of a bearingless switched reluctance motor. IEEE Trans. Power Electron., 23(6):3056–3066. https://doi.org/10.1109/TPEL.2008.2002070

    Article  Google Scholar 

  • Yang, Y., Deng, Z.Q., Yang, G., et al., 2010. A control strategy for bearingless switched-reluctance motors. IEEE Trans. Power Electron., 25(11):2807–2819. https://doi.org/10.1109/TPEL.2010.2051684

    Article  Google Scholar 

  • Yuan, Y., Sun, Y.K., Huang, Y.H., et al., 2015. Harmony chaotic search optimal design of single winding bearingless switched reluctance flywheel motors. Tran. China Electrotechn. Soc., 30(2):180–188 (in Chinese). https://doi.org/10.3969/j.issn.1000-6753.2015.02.024

    Google Scholar 

  • Zhang, C., Tseng, K.J., 2007. A novel flywheel energy storage system with partially-self-bearing flywheel-rotor. IEEE Trans. Energy Conv., 22(2):477–487. https://doi.org/10.1109/TEC.2005.858088

    Article  Google Scholar 

  • Zhu, Y.M., Hou, Z.S., 2015. Controller dynamic linearisationbased model-free adaptive control framework for a class of non-linear system. IET Contr. Theory Appl., 9(7):1162–1172. https://doi.org/10.1049/iet-cta.2014.0743

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-kun Sun.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 51707082 and 51607080), the Natural Science Foundation of Jiangsu Province, China (Nos. BK20170546 and BK20150510), the China Postdoctoral Science Foundation (No. 2017M620192), and the Priority Academic Program Development of Jiangsu Higher Education Institutions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Y., Sun, Yk., Xiang, Qw. et al. Model-free adaptive control for three-degree-of-freedom hybrid magnetic bearings. Frontiers Inf Technol Electronic Eng 18, 2035–2045 (2017). https://doi.org/10.1631/FITEE.1700324

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1700324

Key words

CLC number

Navigation