[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Efficient scheme of low-dose CT reconstruction using TV minimization with an adaptive stopping strategy and sparse dictionary learning for post-processing

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

Recently, low-dose computed tomography (CT) has become highly desirable because of the growing concern for the potential risks of excessive radiation. For low-dose CT imaging, it is a significant challenge to guarantee image quality while reducing radiation dosage. Compared with classical filtered backprojection algorithms, compressed sensing-based iterative reconstruction has achieved excellent imaging performance, but its clinical application is hindered due to its computational inefficiency. To promote low-dose CT imaging, we propose a promising reconstruction scheme which combines total-variation minimization and sparse dictionary learning to enhance the reconstruction performance, and properly schedule them with an adaptive iteration stopping strategy to boost the reconstruction speed. Experiments conducted on a digital phantom and a physical phantom demonstrate a superior performance of our method over other methods in terms of image quality and computational efficiency, which validates its potential for low-dose CT imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Aharon, M., Elad, M., Bruckstein, A.M., 2006. The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process., 54(11):4311–4322. https://doi.org/10.1109/TSP.2006.881199

    Article  Google Scholar 

  • Anderson, A.H., Kak, A.C., 1984. Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm. Ultrason. Imag., 6(1):81–94. https://doi.org/10.1177/016173468400600107

    Article  Google Scholar 

  • Barzilai, J., Borwein, J., 1988. Two-point step size gradient methods. IMA J. Numer. Anal., 8(1):141–148. https://doi.org/10.1093/imanum/8.1.141

    Article  MathSciNet  Google Scholar 

  • Candes, E.J., Romberg, J., Tao, T., 2006. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory, 52(2):489–509. https://doi.org/10.1109/TIT.2005.862083

    Article  MathSciNet  Google Scholar 

  • Chen, Y., Shi, L.Y., Feng, Q.J., et al., 2014. Artifact suppressed dictionary learning for low-dose CT image processing. IEEE Trans. Med. Imag., 33(12):2271–2292. https://doi.org/10.1109/TMI.2014.2336860

    Article  Google Scholar 

  • Dabov, K., Foi, A., Katkovnik, V., et al., 2007. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process., 16(8):2080–2095. https://doi.org/10.1109/TIP.2007.901238

    Article  MathSciNet  Google Scholar 

  • Dong, W.S., Zhang, L., Shi, G.M., et al., 2013. Nonlocally centralized sparse representation for image restoration. IEEE Trans. Image Process., 22(4):1620–1630. https://doi.org/10.1109/TIP.2012.2235847

    Article  MathSciNet  Google Scholar 

  • Elad, M., Aharon, M., 2006. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process., 15(12):3736–3745. https://doi.org/10.1109/TIP.2006.881969

    Article  MathSciNet  Google Scholar 

  • Ginat, D.T., Gupta, R., 2014. Advances in computed tomography imaging technology. Ann. Rev. Biomed. Eng., 16:431–453. https://doi.org/10.1146/annurev-bioeng-121813-113601

    Article  Google Scholar 

  • Han, X., Bian, J.G., Ritman, E.L., et al., 2012. Optimizationbased reconstruction of sparse images from few-view projections. Phys. Med. Biol., 57(16):5245–5273. https://doi.org/10.1088/0031-9155/57/16/5245

    Article  Google Scholar 

  • Jia, X., Dong, B., Lou, Y.F., et al., 2011. GPU-based iterative cone-beam CT reconstruction using tight frame regularization. Phys. Med. Biol., 56:3787–3807. https://doi.org/10.1088/0031-9155/56/13/004

    Article  Google Scholar 

  • Liu, J., Chen, Y., Hu, Y., et al., 2016. Low-dose CBCT reconstruction via 3D dictionary learning. IEEE 13th Int. Symp. on Biomedical Imaging, p.735–738. https://doi.org/10.1109/ISBI.2016.7493371

    Google Scholar 

  • Lustig, M., Donoho, D.L., Santos, J.M., et al., 2008. Compressed sensing MRI. IEEE Signal Process. Mag., 25(2):72–82. https://doi.org/10.1109/MSP.2007.914728

    Article  Google Scholar 

  • Niu, T.Y., Zhu, L., 2012. Accelerated barrier optimization compressed sensing (ABOCS) reconstruction for conebeam CT: phantom studies. Med. Phys., 39(7):4588–4598. https://doi.org/10.1118/1.4729837

    Article  Google Scholar 

  • Niu, T.Y., Ye, X.J., Fruhauf, Q., et al., 2014. Accelerated barrier optimization compressed sensing (ABOCS) for CT reconstruction with improved convergence. Phys. Med. Biol., 59(7):1801–1814. https://doi.org/10.1088/0031-9155/59/7/1801

    Article  Google Scholar 

  • Park, J.C., Song, B.Y., Kim, J.S., et al., 2012. Fast compressed sensing-based CBCT reconstruction using Barzilai-Borwein formulation for application to on-line IGRT. Med. Phys., 39(3):1207–1217. https://doi.org/10.1118/1.3679865

    Article  Google Scholar 

  • Siddon, R.L., 1985. Prism representation: a 3D ray-tracing algorithm for radiotherapy application. Phys. Med. Biol., 30:817–824. https://doi.org/10.1088/0031-9155/30/8/005

    Article  Google Scholar 

  • Sidky, E.Y., Kao, C.M., Pan, X.C., 2008. Image reconstruction in circular cone-beam computed tomogrphy by constrained, total-variation minimization. Phys. Med. Biol., 53:4777–4807. https://doi.org/10.1088/0031-9155/53/17/021

    Article  Google Scholar 

  • Wang, Z., Bovik, A.C., Sheikh, H.R., et al., 2004. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process., 13(4):600–612. https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  • Xu, Q., Yu, H.Y., Mou, X.Q., et al., 2012. Low dose X-ray reconstruciton via dictionary learning. IEEE Trans. Med. Imag., 31(9):1682–1697. https://doi.org/10.1109/TMI.2012.2195669

    Article  Google Scholar 

  • Yan, H., Cervino, L., Jia, X., et al., 2012. A comprehensive study on the relationship between the image quality and imaging dose in low-dose cone beam CT. Phys. Med. Biol., 57(7):2063–2080. https://doi.org/10.1088/0031-9155/57/7/2063

    Article  Google Scholar 

  • Yan, H., Wang, X.Y., Shi, F., et al., 2014. Towards the clinical implementation of iterative low-dose cone-beam CT reconstruction in image-guided radiation therapy: cone/ring artifact correction and multiple GPU implementation. Med. Phys., 41(11):1–15. https://doi.org/10.1118/1.4898324

    Google Scholar 

  • Yu, H.Y., Wang, G., 2010. A soft-threshold filtering approach for reconstruction from a limited number of projections. Phys. Med. Biol., 55:3905–3916. https://doi.org/10.1088/0031-9155/55/13/022

    Article  Google Scholar 

  • Yuan, M., Yang, B.X., Ma, Y.D., et al., 2015. Multi-scale UDCT dictionary learning based highly undersampled MR image reconstruction using patch-based constraint splitting augmented Lagrangian shrinkage algorithm. Front. Inform. Technol. Electron. Eng., 16(2):1069–1087. https://doi.org/10.1631/FITEE.1400423

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Ding.

Additional information

Project supported by the National High-Tech R&D Program (863) of China (No. 2015AA016704c) and the Zhejiang Provincial Natural Science Foundation, China (No. LY14F020028)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Hu, T. Efficient scheme of low-dose CT reconstruction using TV minimization with an adaptive stopping strategy and sparse dictionary learning for post-processing. Frontiers Inf Technol Electronic Eng 18, 2001–2008 (2017). https://doi.org/10.1631/FITEE.1700287

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1700287

Key words

CLC number

Navigation