[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

An improved fruit fly optimization algorithm for solving traveling salesman problem

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

The traveling salesman problem (TSP), a typical non-deterministic polynomial (NP) hard problem, has been used in many engineering applications. As a new swarm-intelligence optimization algorithm, the fruit fly optimization algorithm (FOA) is used to solve TSP, since it has the advantages of being easy to understand and having a simple implementation. However, it has problems, including a slow convergence rate for the algorithm, easily falling into the local optimum, and an insufficient optimi-zation precision. To address TSP effectively, three improvements are proposed in this paper to improve FOA. First, the vision search process is reinforced in the foraging behavior of fruit flies to improve the convergence rate of FOA. Second, an elimination mechanism is added to FOA to increase the diversity. Third, a reverse operator and a multiplication operator are proposed. They are performed on the solution sequence in the fruit fly’s smell search and vision search processes, respectively. In the experiment, 10 benchmarks selected from TSPLIB are tested. The results show that the improved FOA outperforms other alternatives in terms of the convergence rate and precision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bellman, R.E., Dreyfus, S.E., 1962. Applied Dynamic Pro-gramming. Princeton University Press, New Jersey, USA, p.50–68.

    Book  Google Scholar 

  • Clerc, M., 2004. Discrete particle swarm optimization, illus-trated by the traveling salesman problem. In: Onwubolu, G.C., Babu, B.V. (Eds.), New Optimization Techniques in Engineering. Springer Berlin Heidelberg, p.219–239. https://doi.org/10.1007/978-3-540-39930-8_8

    Chapter  Google Scholar 

  • Croes, G.A., 1958. A method for solving traveling-salesman problems. Oper. Res., 6(6): 791–812. https://doi.org/10.1287/opre.6.6.791

    Article  MathSciNet  Google Scholar 

  • Ding, C., Cheng, Y., He, M., 2007. Two-level genetic algorithm for clustered traveling salesman problem with application in large-scale TSPs. Tsinghua Sci. Technol., 12(4): 459–465. https://doi.org/10.1016/S1007-0214(07)70068-8

    Article  MathSciNet  Google Scholar 

  • Dong, G.F., Guo, W.W., Tickle, K., 2012. Solving the traveling salesman problem using cooperative genetic ant systems. Exp. Syst. Appl., 39(5): 5006–5011. https://doi.org/10.1016/j.eswa.2011.10.012

    Article  Google Scholar 

  • Dorigo, M., Gambardella, L.M., 1997. Ant colonies for the travelling salesman problem. BioSystems, 43(2): 73–81. https://doi.org/10.1016/S0303-2647(97)01708-5

    Article  Google Scholar 

  • Escario, J.B., Jimenez, J.F., Giron-Sierra, J.M., 2015. Ant colony extended: experiments on the travelling salesman problem. Exp. Syst. Appl., 42(1): 390–410. https://doi.org/10.1016/j.eswa.2014.07.054

    Article  Google Scholar 

  • Geng, X.T., Chen, Z.H., Yang, W., et al., 2011. Solving the traveling salesman problem based on an adaptive simu-lated annealing algorithm with greedy search. Appl. Soft Comput., 11(4): 3680–3689. https://doi.org/10.1016/j.asoc.2011.01.039

    Article  Google Scholar 

  • Grefenstette, J.J., Gopal, R., Rosmaita, B.J., et al., 1985. Ge-netic algorithms for the traveling salesman problem. 1st Int. Conf. on Genetic Algorithms and Their Applications, p.160–168.

    Google Scholar 

  • Gündüz, M., Kiran, M.S., Özceylan, E., 2015. A hierarchic approach based on swarm intelligence to solve the travel-ing salesman problem. Turk. J. Electric. Eng. Comput. Sci., 23(1): 103–117. https://doi.org/10.3906/elk-1210-147

    Article  Google Scholar 

  • Hendtlass, T., 2003. Preserving diversity in particle swarm optimisation. In: Chung, P.W.H., Hinde, C., Ali, M. (Eds.), Developments in Applied Artificial Intelligence. Springer Berlin Heidelberg, p.31–40. https://doi.org/10.1007/3-540-45034-3_4

    Chapter  Google Scholar 

  • Hoffmann, M., Mühlenthaler, M., Helwig, S., et al., 2011. Discrete particle swarm optimization for TSP: theoretical results and experimental evaluations. In: Bouchachia, A. (Ed.), Adaptive and Intelligent Systems. Springer Berlin Heidelberg, p.416–427. https://doi.org/10.1007/978-3-642-23857-4_40

    Chapter  Google Scholar 

  • Jolai, F., Ghanbari, A., 2010. Integrating data transformation techniques with Hopfield neural networks for solving travelling salesman problem. Exp. Syst. Appl., 37(7): 5331–5335. https://doi.org/10.1016/j.eswa.2010.01.002

    Article  Google Scholar 

  • Karaboga, D., Gorkemli, B., 2011. A combinatorial artificial bee colony algorithm for traveling salesman problem. IEEE Int. Symp. on Innovations in Intelligent Systems and Applications, p.50–53. https://doi.org/10.1109/INISTA.2011.5946125

    Google Scholar 

  • Kirkpatrick, S., 1984. Optimization by simulated annealing: quantitative studies. J. Stat. Phys., 34(5–6): 975–986. https://doi.org/10.1007/BF01009452

    Article  MathSciNet  Google Scholar 

  • Lawler, E.L., Wood, D.E., 1966. Branch-and-bound methods: a survey. Oper. Res., 14(4): 699–719. https://doi.org/10.1287/opre.14.4.699

    Article  MathSciNet  Google Scholar 

  • Little, J.D.C., Murty, K.G., Sweeney, D.W., et al., 1963. An algorithm for the traveling salesman problem. Oper. Res., 11(6): 972–989. https://doi.org/10.1287/opre.11.6.972

    Article  Google Scholar 

  • Liu, F., Zeng, G.Z., 2009. Study of genetic algorithm with reinforcement learning to solve the TSP. Exp. Syst. Appl., 36(3): 6995–7001. https://doi.org/10.1016/j.eswa.2008.08.026

    Article  MathSciNet  Google Scholar 

  • Mahi, M., Baykan, Ö.K., Kodaz, H., 2015. A new hybrid method based on particle swarm optimization, ant colony optimization and 3-opt algorithms for traveling salesman problem. Appl. Soft Comput., 30: 484–490. https://doi.org/10.1016/j.asoc.2015.01.068

    Article  Google Scholar 

  • Masutti, T.A.S., de Castro, L.N., 2009. A self-organizing neural network using ideas from the immune system to solve the traveling salesman problem. Inform. Sci., 179(10): 1454–1468. https://doi.org/10.1016/j.ins.2008.12.016

    Article  MathSciNet  Google Scholar 

  • Ouyang, X.X., Zhou, Y.G., Luo, Q.F., et al., 2013. A novel discrete cuckoo search algorithm for spherical traveling salesman problem. Appl. Math. Inform. Sci., 7(2): 777–784. https://doi.org/10.12785/amis/070248

    Article  MathSciNet  Google Scholar 

  • Pan, W.T., 2011. Fruit Fly Optimization Algorithm. Tsang Hai Book Publishing Co., Taipei, China, p.221–232 (in Chi-nese).

    Google Scholar 

  • Pan, W.T., 2012. A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowl.-Based Syst., 26: 69–74. https://doi.org/10.1016/j.knosys.2011.07.001

    Article  Google Scholar 

  • Pasti, R., de Castro, L.N., 2006. A neuro-immune network for solving the traveling salesman problem. IEEE Int. Joint Conf. on Neural Network, p.3760–3766. https://doi.org/10.1109/IJCNN.2006.247394

    Google Scholar 

  • Peker, M., Şen, B., Kumru, P.Y., 2013. An efficient solving of the traveling salesman problem: the ant colony system having parameters optimized by the Taguchi method. Turk. J. Electric. Eng. Comput. Sci., 21(55): 2015–2036. https://doi.org/10.3906/elk-1109-44

    Article  Google Scholar 

  • Wu, J.Q., Ouyang, A.J., 2012. A hybrid algorithm of ACO and delete-cross method for TSP. IEEE Int. Conf. on Industrial Control and Electronics Engineering, p.1694–1696. https://doi.org/10.1109/ICICEE.2012.448

    Google Scholar 

  • Zhou, Y.Q., Luo, Q.F., Chen, H., et al., 2015. A discrete inva-sive weed optimization algorithm for solving traveling salesman problem. Neurocomputing, 151: 1227–1236. https://doi.org/10.1016/j.neucom.2014.01.078

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lan Huang, Gui-chao Wang or Zhe Wang.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 61472159 and 61373051)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Wang, Gc., Bai, T. et al. An improved fruit fly optimization algorithm for solving traveling salesman problem. Frontiers Inf Technol Electronic Eng 18, 1525–1533 (2017). https://doi.org/10.1631/FITEE.1601364

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1601364

Keywords

CLC number

Navigation